Loading…
Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea
The extent of horizontal gene transfer (HGT) among marine pelagic prokaryotes and the role that HGT may have played in their adaptation to this particular environment remain open questions. This is partly due to the paucity of cultured species and genomic information for many widespread groups of ma...
Saved in:
Published in: | The ISME Journal 2011-08, Vol.5 (8), p.1291-1302 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c611t-a694f145bdb49ab602cfbdbc929c5990a8a3f40fe0dd9af43d2aecc9693c8b863 |
---|---|
cites | cdi_FETCH-LOGICAL-c611t-a694f145bdb49ab602cfbdbc929c5990a8a3f40fe0dd9af43d2aecc9693c8b863 |
container_end_page | 1302 |
container_issue | 8 |
container_start_page | 1291 |
container_title | The ISME Journal |
container_volume | 5 |
creator | Brochier-Armanet, Céline Deschamps, Philippe López-García, Purificación Zivanovic, Yvan Rodríguez-Valera, Francisco Moreira, David |
description | The extent of horizontal gene transfer (HGT) among marine pelagic prokaryotes and the role that HGT may have played in their adaptation to this particular environment remain open questions. This is partly due to the paucity of cultured species and genomic information for many widespread groups of marine bacteria and archaea. Molecular studies have revealed a large diversity and relative abundance of marine planktonic archaea, in particular of Thaumarchaeota (also known as group I Crenarchaeota) and Euryarchaeota of groups II and III, but only one species (the thaumarchaeote
Candidatus
Nitrosopumilus maritimus) has been isolated in pure culture so far. Therefore, metagenomics remains the most powerful approach to study these environmental groups. To investigate the impact of HGT in marine archaea, we carried out detailed phylogenetic analyses of all open reading frames of 21 archaeal 16S rRNA gene-containing fosmids and, to extend our analysis to other genomic regions, also of fosmid-end sequences of 12 774 fosmids from three different deep-sea locations (South Atlantic and Adriatic Sea at 1000 m depth, and Ionian Sea at 3000 m depth). We found high HGT rates in both marine planktonic Thaumarchaeota and Euryarchaeota, with remarkable converging values estimated from complete-fosmid and fosmid-end sequence analysis (25 and 21% of the genes, respectively). Most HGTs came from bacterial donors (mainly from Proteobacteria, Firmicutes and Chloroflexi) but also from other archaea and eukaryotes. Phylogenetic analyses showed that in most cases HGTs are shared by several representatives of the studied groups, implying that they are ancient and have been conserved over relatively long evolutionary periods. This, together with the functions carried out by these acquired genes (mostly related to energy metabolism and transport of metabolites across membranes), suggests that HGT has played an important role in the adaptation of these archaea to the cold and nutrient-depleted deep marine environment. |
doi_str_mv | 10.1038/ismej.2011.16 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3146271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>878277968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-a694f145bdb49ab602cfbdbc929c5990a8a3f40fe0dd9af43d2aecc9693c8b863</originalsourceid><addsrcrecordid>eNp9kk2P0zAQhiMEYj_gyBUZLsAhxXZSf1xWWlULi1SJC5wtxxm3Lold7KQS--txmqXASnDyaOaZd8YzUxQvCF4QXIn3LvWwW1BMyIKwR8U54UtS8orjxyeb0bPiIqUdxkvOGH9anFFS1YwLeV7crUK_72CA0obUuxZp36LZLCGbCb6P4A0kFOEAukM2Hj0D2obo7oIfsm8DHtAQtU8WYkLOo15Hl32jN2M3jBFatO-0_zYE7wzS0Ww16GfFE6u7BM_v38vi64ebL6vbcv3546fV9bo0jJCh1EzWltTLpm1qqRuGqbHZNpJKs5QSa6ErW2MLuG2ltnXVUg3GSCYrIxrBqsviatbdj00PrcnNR92pfXS5yx8qaKf-jni3VZtwUBWpGeUkC7ybBbYP0m6v12ryYcwYXTJ-mNg398ViyHNKg-pdMtDl30MYkxJcUM4lE5l8-1-SYJo1K8qrjL5-gO7CGH0eWtbjQuTFTpXLGTIxpBTBnlolWE2noo6noqZTUWQay8s_x3Kif91GBhYzkHLIbyD-rvovxVdzgtfTzk-KR2qCMvMTQr7ZNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>877880051</pqid></control><display><type>article</type><title>Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea</title><source>Open Access: PubMed Central</source><source>Open Access: Oxford University Press Open Journals</source><creator>Brochier-Armanet, Céline ; Deschamps, Philippe ; López-García, Purificación ; Zivanovic, Yvan ; Rodríguez-Valera, Francisco ; Moreira, David</creator><creatorcontrib>Brochier-Armanet, Céline ; Deschamps, Philippe ; López-García, Purificación ; Zivanovic, Yvan ; Rodríguez-Valera, Francisco ; Moreira, David</creatorcontrib><description>The extent of horizontal gene transfer (HGT) among marine pelagic prokaryotes and the role that HGT may have played in their adaptation to this particular environment remain open questions. This is partly due to the paucity of cultured species and genomic information for many widespread groups of marine bacteria and archaea. Molecular studies have revealed a large diversity and relative abundance of marine planktonic archaea, in particular of Thaumarchaeota (also known as group I Crenarchaeota) and Euryarchaeota of groups II and III, but only one species (the thaumarchaeote
Candidatus
Nitrosopumilus maritimus) has been isolated in pure culture so far. Therefore, metagenomics remains the most powerful approach to study these environmental groups. To investigate the impact of HGT in marine archaea, we carried out detailed phylogenetic analyses of all open reading frames of 21 archaeal 16S rRNA gene-containing fosmids and, to extend our analysis to other genomic regions, also of fosmid-end sequences of 12 774 fosmids from three different deep-sea locations (South Atlantic and Adriatic Sea at 1000 m depth, and Ionian Sea at 3000 m depth). We found high HGT rates in both marine planktonic Thaumarchaeota and Euryarchaeota, with remarkable converging values estimated from complete-fosmid and fosmid-end sequence analysis (25 and 21% of the genes, respectively). Most HGTs came from bacterial donors (mainly from Proteobacteria, Firmicutes and Chloroflexi) but also from other archaea and eukaryotes. Phylogenetic analyses showed that in most cases HGTs are shared by several representatives of the studied groups, implying that they are ancient and have been conserved over relatively long evolutionary periods. This, together with the functions carried out by these acquired genes (mostly related to energy metabolism and transport of metabolites across membranes), suggests that HGT has played an important role in the adaptation of these archaea to the cold and nutrient-depleted deep marine environment.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2011.16</identifier><identifier>PMID: 21346789</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/2446/2447 ; 631/1647/2300 ; 631/326/2565/2142 ; 631/326/26 ; Archaea ; Archaea - classification ; Archaea - genetics ; Archaea - physiology ; Biochemistry, Molecular Biology ; Biomedical and Life Sciences ; Crenarchaeota ; Crenarchaeota - classification ; Crenarchaeota - genetics ; Deep sea ; Ecology ; Environmental organizations ; Euryarchaeota ; Euryarchaeota - classification ; Euryarchaeota - genetics ; Evolutionary Biology ; Firmicutes ; Gene Library ; Gene Transfer, Horizontal ; Genes, Archaeal ; Genomics ; Life Sciences ; Marine ; Marine environment ; Metabolites ; Metagenomics ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microbiology and Parasitology ; Nutrients ; Oceans and Seas ; Original ; original-article ; Phylogeny ; Plankton ; Plankton - classification ; Plankton - genetics ; Proteobacteria ; Relative abundance ; RNA, Archaeal ; RNA, Archaeal - genetics ; RNA, Ribosomal, 16S ; RNA, Ribosomal, 16S - genetics</subject><ispartof>The ISME Journal, 2011-08, Vol.5 (8), p.1291-1302</ispartof><rights>International Society for Microbial Ecology 2011</rights><rights>Copyright Nature Publishing Group Aug 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2011 International Society for Microbial Ecology 2011 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c611t-a694f145bdb49ab602cfbdbc929c5990a8a3f40fe0dd9af43d2aecc9693c8b863</citedby><cites>FETCH-LOGICAL-c611t-a694f145bdb49ab602cfbdbc929c5990a8a3f40fe0dd9af43d2aecc9693c8b863</cites><orcidid>0000-0002-2064-5354 ; 0000-0003-4669-3589 ; 0000-0003-2458-4381 ; 0000-0002-0927-0651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146271/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146271/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21346789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00662567$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brochier-Armanet, Céline</creatorcontrib><creatorcontrib>Deschamps, Philippe</creatorcontrib><creatorcontrib>López-García, Purificación</creatorcontrib><creatorcontrib>Zivanovic, Yvan</creatorcontrib><creatorcontrib>Rodríguez-Valera, Francisco</creatorcontrib><creatorcontrib>Moreira, David</creatorcontrib><title>Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>The extent of horizontal gene transfer (HGT) among marine pelagic prokaryotes and the role that HGT may have played in their adaptation to this particular environment remain open questions. This is partly due to the paucity of cultured species and genomic information for many widespread groups of marine bacteria and archaea. Molecular studies have revealed a large diversity and relative abundance of marine planktonic archaea, in particular of Thaumarchaeota (also known as group I Crenarchaeota) and Euryarchaeota of groups II and III, but only one species (the thaumarchaeote
Candidatus
Nitrosopumilus maritimus) has been isolated in pure culture so far. Therefore, metagenomics remains the most powerful approach to study these environmental groups. To investigate the impact of HGT in marine archaea, we carried out detailed phylogenetic analyses of all open reading frames of 21 archaeal 16S rRNA gene-containing fosmids and, to extend our analysis to other genomic regions, also of fosmid-end sequences of 12 774 fosmids from three different deep-sea locations (South Atlantic and Adriatic Sea at 1000 m depth, and Ionian Sea at 3000 m depth). We found high HGT rates in both marine planktonic Thaumarchaeota and Euryarchaeota, with remarkable converging values estimated from complete-fosmid and fosmid-end sequence analysis (25 and 21% of the genes, respectively). Most HGTs came from bacterial donors (mainly from Proteobacteria, Firmicutes and Chloroflexi) but also from other archaea and eukaryotes. Phylogenetic analyses showed that in most cases HGTs are shared by several representatives of the studied groups, implying that they are ancient and have been conserved over relatively long evolutionary periods. This, together with the functions carried out by these acquired genes (mostly related to energy metabolism and transport of metabolites across membranes), suggests that HGT has played an important role in the adaptation of these archaea to the cold and nutrient-depleted deep marine environment.</description><subject>631/158/2446/2447</subject><subject>631/1647/2300</subject><subject>631/326/2565/2142</subject><subject>631/326/26</subject><subject>Archaea</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - physiology</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Crenarchaeota</subject><subject>Crenarchaeota - classification</subject><subject>Crenarchaeota - genetics</subject><subject>Deep sea</subject><subject>Ecology</subject><subject>Environmental organizations</subject><subject>Euryarchaeota</subject><subject>Euryarchaeota - classification</subject><subject>Euryarchaeota - genetics</subject><subject>Evolutionary Biology</subject><subject>Firmicutes</subject><subject>Gene Library</subject><subject>Gene Transfer, Horizontal</subject><subject>Genes, Archaeal</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Marine</subject><subject>Marine environment</subject><subject>Metabolites</subject><subject>Metagenomics</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microbiology and Parasitology</subject><subject>Nutrients</subject><subject>Oceans and Seas</subject><subject>Original</subject><subject>original-article</subject><subject>Phylogeny</subject><subject>Plankton</subject><subject>Plankton - classification</subject><subject>Plankton - genetics</subject><subject>Proteobacteria</subject><subject>Relative abundance</subject><subject>RNA, Archaeal</subject><subject>RNA, Archaeal - genetics</subject><subject>RNA, Ribosomal, 16S</subject><subject>RNA, Ribosomal, 16S - genetics</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kk2P0zAQhiMEYj_gyBUZLsAhxXZSf1xWWlULi1SJC5wtxxm3Lold7KQS--txmqXASnDyaOaZd8YzUxQvCF4QXIn3LvWwW1BMyIKwR8U54UtS8orjxyeb0bPiIqUdxkvOGH9anFFS1YwLeV7crUK_72CA0obUuxZp36LZLCGbCb6P4A0kFOEAukM2Hj0D2obo7oIfsm8DHtAQtU8WYkLOo15Hl32jN2M3jBFatO-0_zYE7wzS0Ww16GfFE6u7BM_v38vi64ebL6vbcv3546fV9bo0jJCh1EzWltTLpm1qqRuGqbHZNpJKs5QSa6ErW2MLuG2ltnXVUg3GSCYrIxrBqsviatbdj00PrcnNR92pfXS5yx8qaKf-jni3VZtwUBWpGeUkC7ybBbYP0m6v12ryYcwYXTJ-mNg398ViyHNKg-pdMtDl30MYkxJcUM4lE5l8-1-SYJo1K8qrjL5-gO7CGH0eWtbjQuTFTpXLGTIxpBTBnlolWE2noo6noqZTUWQay8s_x3Kif91GBhYzkHLIbyD-rvovxVdzgtfTzk-KR2qCMvMTQr7ZNQ</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Brochier-Armanet, Céline</creator><creator>Deschamps, Philippe</creator><creator>López-García, Purificación</creator><creator>Zivanovic, Yvan</creator><creator>Rodríguez-Valera, Francisco</creator><creator>Moreira, David</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2064-5354</orcidid><orcidid>https://orcid.org/0000-0003-4669-3589</orcidid><orcidid>https://orcid.org/0000-0003-2458-4381</orcidid><orcidid>https://orcid.org/0000-0002-0927-0651</orcidid></search><sort><creationdate>20110801</creationdate><title>Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea</title><author>Brochier-Armanet, Céline ; Deschamps, Philippe ; López-García, Purificación ; Zivanovic, Yvan ; Rodríguez-Valera, Francisco ; Moreira, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-a694f145bdb49ab602cfbdbc929c5990a8a3f40fe0dd9af43d2aecc9693c8b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/158/2446/2447</topic><topic>631/1647/2300</topic><topic>631/326/2565/2142</topic><topic>631/326/26</topic><topic>Archaea</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - physiology</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Crenarchaeota</topic><topic>Crenarchaeota - classification</topic><topic>Crenarchaeota - genetics</topic><topic>Deep sea</topic><topic>Ecology</topic><topic>Environmental organizations</topic><topic>Euryarchaeota</topic><topic>Euryarchaeota - classification</topic><topic>Euryarchaeota - genetics</topic><topic>Evolutionary Biology</topic><topic>Firmicutes</topic><topic>Gene Library</topic><topic>Gene Transfer, Horizontal</topic><topic>Genes, Archaeal</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Marine</topic><topic>Marine environment</topic><topic>Metabolites</topic><topic>Metagenomics</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microbiology and Parasitology</topic><topic>Nutrients</topic><topic>Oceans and Seas</topic><topic>Original</topic><topic>original-article</topic><topic>Phylogeny</topic><topic>Plankton</topic><topic>Plankton - classification</topic><topic>Plankton - genetics</topic><topic>Proteobacteria</topic><topic>Relative abundance</topic><topic>RNA, Archaeal</topic><topic>RNA, Archaeal - genetics</topic><topic>RNA, Ribosomal, 16S</topic><topic>RNA, Ribosomal, 16S - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brochier-Armanet, Céline</creatorcontrib><creatorcontrib>Deschamps, Philippe</creatorcontrib><creatorcontrib>López-García, Purificación</creatorcontrib><creatorcontrib>Zivanovic, Yvan</creatorcontrib><creatorcontrib>Rodríguez-Valera, Francisco</creatorcontrib><creatorcontrib>Moreira, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brochier-Armanet, Céline</au><au>Deschamps, Philippe</au><au>López-García, Purificación</au><au>Zivanovic, Yvan</au><au>Rodríguez-Valera, Francisco</au><au>Moreira, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>5</volume><issue>8</issue><spage>1291</spage><epage>1302</epage><pages>1291-1302</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>The extent of horizontal gene transfer (HGT) among marine pelagic prokaryotes and the role that HGT may have played in their adaptation to this particular environment remain open questions. This is partly due to the paucity of cultured species and genomic information for many widespread groups of marine bacteria and archaea. Molecular studies have revealed a large diversity and relative abundance of marine planktonic archaea, in particular of Thaumarchaeota (also known as group I Crenarchaeota) and Euryarchaeota of groups II and III, but only one species (the thaumarchaeote
Candidatus
Nitrosopumilus maritimus) has been isolated in pure culture so far. Therefore, metagenomics remains the most powerful approach to study these environmental groups. To investigate the impact of HGT in marine archaea, we carried out detailed phylogenetic analyses of all open reading frames of 21 archaeal 16S rRNA gene-containing fosmids and, to extend our analysis to other genomic regions, also of fosmid-end sequences of 12 774 fosmids from three different deep-sea locations (South Atlantic and Adriatic Sea at 1000 m depth, and Ionian Sea at 3000 m depth). We found high HGT rates in both marine planktonic Thaumarchaeota and Euryarchaeota, with remarkable converging values estimated from complete-fosmid and fosmid-end sequence analysis (25 and 21% of the genes, respectively). Most HGTs came from bacterial donors (mainly from Proteobacteria, Firmicutes and Chloroflexi) but also from other archaea and eukaryotes. Phylogenetic analyses showed that in most cases HGTs are shared by several representatives of the studied groups, implying that they are ancient and have been conserved over relatively long evolutionary periods. This, together with the functions carried out by these acquired genes (mostly related to energy metabolism and transport of metabolites across membranes), suggests that HGT has played an important role in the adaptation of these archaea to the cold and nutrient-depleted deep marine environment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21346789</pmid><doi>10.1038/ismej.2011.16</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2064-5354</orcidid><orcidid>https://orcid.org/0000-0003-4669-3589</orcidid><orcidid>https://orcid.org/0000-0003-2458-4381</orcidid><orcidid>https://orcid.org/0000-0002-0927-0651</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2011-08, Vol.5 (8), p.1291-1302 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3146271 |
source | Open Access: PubMed Central; Open Access: Oxford University Press Open Journals |
subjects | 631/158/2446/2447 631/1647/2300 631/326/2565/2142 631/326/26 Archaea Archaea - classification Archaea - genetics Archaea - physiology Biochemistry, Molecular Biology Biomedical and Life Sciences Crenarchaeota Crenarchaeota - classification Crenarchaeota - genetics Deep sea Ecology Environmental organizations Euryarchaeota Euryarchaeota - classification Euryarchaeota - genetics Evolutionary Biology Firmicutes Gene Library Gene Transfer, Horizontal Genes, Archaeal Genomics Life Sciences Marine Marine environment Metabolites Metagenomics Microbial Ecology Microbial Genetics and Genomics Microbiology Microbiology and Parasitology Nutrients Oceans and Seas Original original-article Phylogeny Plankton Plankton - classification Plankton - genetics Proteobacteria Relative abundance RNA, Archaeal RNA, Archaeal - genetics RNA, Ribosomal, 16S RNA, Ribosomal, 16S - genetics |
title | Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete-fosmid%20and%20fosmid-end%20sequences%20reveal%20frequent%20horizontal%20gene%20transfers%20in%20marine%20uncultured%20planktonic%20archaea&rft.jtitle=The%20ISME%20Journal&rft.au=Brochier-Armanet,%20C%C3%A9line&rft.date=2011-08-01&rft.volume=5&rft.issue=8&rft.spage=1291&rft.epage=1302&rft.pages=1291-1302&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2011.16&rft_dat=%3Cproquest_pubme%3E878277968%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c611t-a694f145bdb49ab602cfbdbc929c5990a8a3f40fe0dd9af43d2aecc9693c8b863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=877880051&rft_id=info:pmid/21346789&rfr_iscdi=true |