Loading…

Protection of SH-SY5Y Neuronal Cells from Glutamate-Induced Apoptosis by 3,6′-Disinapoyl Sucrose, a Bioactive Compound Isolated from Radix Polygala

The neuroprotective effects of 3,6′-disinapoyl sucrose (DISS) from Radix Polygala against glutamate-induced SH-SY5Y neuronal cells injury were evaluated in the present study. SH-SY5Y neuronal cells were pretreated with glutamate (8 mM) for 30 min followed by cotreatment with DISS for 12 h. Cell viab...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedicine & biotechnology 2012-01, Vol.2012 (2012), p.1-5
Main Authors: Hu, Yuan, Li, Jie, Liu, Ping, Chen, Xu, Guo, Dai-Hong, Li, Qing-Shan, Rahman, Khalid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The neuroprotective effects of 3,6′-disinapoyl sucrose (DISS) from Radix Polygala against glutamate-induced SH-SY5Y neuronal cells injury were evaluated in the present study. SH-SY5Y neuronal cells were pretreated with glutamate (8 mM) for 30 min followed by cotreatment with DISS for 12 h. Cell viability was determined by (3,4,5-dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide (MTT) assay, and apoptosis was confirmed by cell morphology and flow cytometry assay, evaluated with propidium iodide dye. Treatment with DISS (0.6, 6, and 60 μmol/L) increased cell viability dose dependently, inhibited LDH release, and attenuated apoptosis. The mechanisms by which DISS protected neuron cells from glutamate-induced excitotoxicity included the downregulation of proapoptotic gene Bax and the upregulation of antiapoptotic gene Bcl-2. The present findings indicated that DISS exerts neuroprotective effects against glutamate toxicity, which might be of importance and contribute to its clinical efficacy for the treatment of neurodegenerative diseases.
ISSN:1110-7243
1110-7251
DOI:10.1155/2012/728342