Loading…
Disrupting the CH1 Domain Structure in the Acetyltransferases CBP and p300 Results in Lean Mice with Increased Metabolic Control
Opposing activities of acetyltransferases and deacetylases help regulate energy balance. Mice heterozygous for the acetyltransferase CREB binding protein (CBP) are lean and insulin sensitized, but how CBP regulates energy homeostasis is unclear. In one model, the main CBP interaction with the glucag...
Saved in:
Published in: | Cell metabolism 2011-08, Vol.14 (2), p.219-230 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Opposing activities of acetyltransferases and deacetylases help regulate energy balance. Mice heterozygous for the acetyltransferase CREB binding protein (CBP) are lean and insulin sensitized, but how CBP regulates energy homeostasis is unclear. In one model, the main CBP interaction with the glucagon-responsive factor CREB is not limiting for liver gluconeogenesis, whereas a second model posits that Ser436 in the CH1 (TAZ1) domain of CBP is required for insulin and the antidiabetic drug metformin to inhibit CREB-mediated liver gluconeogenesis. Here we show that conditional knockout of
CBP in liver does not decrease fasting blood glucose or gluconeogenic gene expression, consistent with the first model. However, mice in which the CBP CH1 domain structure is disrupted by deleting residues 342–393 (ΔCH1) are lean and insulin sensitized, as are p300ΔCH1 mutants.
CBP
ΔCH1/ΔCH1
mice remain metformin responsive. An intact CH1 domain is thus necessary for normal energy storage, but not for the blood glucose-lowering actions of insulin and metformin.
► Conditional knockout of CBP in the liver does not affect glucose homeostasis ► Deletion mutation in the CBP or p300 CH1 domain enhances metabolic control ► The CH1 domain is likely critical outside the liver for glucose homeostasis ► CBP CH1 domain mutant mice respond normally to metformin |
---|---|
ISSN: | 1550-4131 1932-7420 |
DOI: | 10.1016/j.cmet.2011.06.010 |