Loading…

Modeling maternal-offspring gene-gene interactions: the extended-MFG test

Maternal‐fetal genotype (MFG) incompatibility is an interaction between the genes of a mother and offspring at a particular locus that adversely affects the developing fetus, thereby increasing susceptibility to disease. Statistical methods for examining MFG incompatibility as a disease risk factor...

Full description

Saved in:
Bibliographic Details
Published in:Genetic epidemiology 2010-07, Vol.34 (5), p.512-521
Main Authors: Childs, Erica J., Palmer, Christina G.S., Lange, Kenneth, Sinsheimer, Janet S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3
cites cdi_FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3
container_end_page 521
container_issue 5
container_start_page 512
container_title Genetic epidemiology
container_volume 34
creator Childs, Erica J.
Palmer, Christina G.S.
Lange, Kenneth
Sinsheimer, Janet S.
description Maternal‐fetal genotype (MFG) incompatibility is an interaction between the genes of a mother and offspring at a particular locus that adversely affects the developing fetus, thereby increasing susceptibility to disease. Statistical methods for examining MFG incompatibility as a disease risk factor have been developed for nuclear families. Because families collected as part of a study can be large and complex, containing multiple generations and marriage loops, we create the Extended‐MFG (EMFG) Test, a model‐based likelihood approach, to allow for arbitrary family structures. We modify the MFG test by replacing the nuclear‐family based “mating type” approach with Ott's representation of a pedigree likelihood and calculating MFG incompatibility along with the Mendelian transmission probability. In order to allow for extension to arbitrary family structures, we make a slightly more stringent assumption of random mating with respect to the locus of interest. Simulations show that the EMFG test has appropriate type‐I error rate, power, and precise parameter estimation when random mating holds. Our simulations and real data example illustrate that the chief advantages of the EMFG test over the earlier nuclear family version of the MFG test are improved accuracy of parameter estimation and power gains in the presence of missing genotypes. Genet. Epidemiol. 34: 512–521, 2010.© 2010 Wiley‐Liss, Inc.
doi_str_mv 10.1002/gepi.20508
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3165170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733566061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhi0EoqHlwgOgvSEhbfF41vYuB6SqakJQ03KA5mg59mxq2OyG9Ya2b1-HtBFc6MWWPN98-q2fsTfAj4Fz8WFJ63AsuOTlMzYCXpW5EFo8ZyOuC8g5VvKAvYrxB-cARSVfsoMES6FQj9h01nlqQrvMVnagvrVN3tV1XPfbpyW1lG-PLLRpaN0QujZ-zIZryuh2oNaTz2fjSTZQHI7Yi9o2kV4_3Ifs-_js2-nn_PxyMj09Oc9dUaZo2irtNRdeSlk4WChBQqBHkFCjciUXtkaoPDlb4AIXvkR01hNiRU6Sx0P2aeddbxYr8o7aobeNSYlXtr8znQ3m30kbrs2y-20QlATNk-Ddg6Dvfm1ScrMK0VHT2Ja6TTRlWQJHQPUkqRGlUlxBIt_vSNd3MfZU7_MAN9uSzLYk86ekBL_9-wd79LGVBMAOuAkN3f1HZSZnX6eP0ny3E-JAt_sd2_80SqOWZn4xMbPxHK6-XM0Nx3tDSKy3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733566061</pqid></control><display><type>article</type><title>Modeling maternal-offspring gene-gene interactions: the extended-MFG test</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Childs, Erica J. ; Palmer, Christina G.S. ; Lange, Kenneth ; Sinsheimer, Janet S.</creator><creatorcontrib>Childs, Erica J. ; Palmer, Christina G.S. ; Lange, Kenneth ; Sinsheimer, Janet S.</creatorcontrib><description>Maternal‐fetal genotype (MFG) incompatibility is an interaction between the genes of a mother and offspring at a particular locus that adversely affects the developing fetus, thereby increasing susceptibility to disease. Statistical methods for examining MFG incompatibility as a disease risk factor have been developed for nuclear families. Because families collected as part of a study can be large and complex, containing multiple generations and marriage loops, we create the Extended‐MFG (EMFG) Test, a model‐based likelihood approach, to allow for arbitrary family structures. We modify the MFG test by replacing the nuclear‐family based “mating type” approach with Ott's representation of a pedigree likelihood and calculating MFG incompatibility along with the Mendelian transmission probability. In order to allow for extension to arbitrary family structures, we make a slightly more stringent assumption of random mating with respect to the locus of interest. Simulations show that the EMFG test has appropriate type‐I error rate, power, and precise parameter estimation when random mating holds. Our simulations and real data example illustrate that the chief advantages of the EMFG test over the earlier nuclear family version of the MFG test are improved accuracy of parameter estimation and power gains in the presence of missing genotypes. Genet. Epidemiol. 34: 512–521, 2010.© 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 0741-0395</identifier><identifier>ISSN: 1098-2272</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.20508</identifier><identifier>PMID: 20552637</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alleles ; Computer Simulation ; family based association ; Family Health ; Female ; gene by environment ; Genetic Predisposition to Disease ; Genetic Testing ; Genotype ; Humans ; Likelihood Functions ; maternal-fetal interaction ; Models, Genetic ; Models, Statistical ; Mothers ; Nuclear Family ; Pedigree ; pedigree likelihood ; Pregnancy ; Risk Factors</subject><ispartof>Genetic epidemiology, 2010-07, Vol.34 (5), p.512-521</ispartof><rights>2010 Wiley‐Liss, Inc.</rights><rights>(c) 2010 Wiley-Liss, Inc.</rights><rights>2010 Wiley-Liss, Inc. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3</citedby><cites>FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20552637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Childs, Erica J.</creatorcontrib><creatorcontrib>Palmer, Christina G.S.</creatorcontrib><creatorcontrib>Lange, Kenneth</creatorcontrib><creatorcontrib>Sinsheimer, Janet S.</creatorcontrib><title>Modeling maternal-offspring gene-gene interactions: the extended-MFG test</title><title>Genetic epidemiology</title><addtitle>Genet. Epidemiol</addtitle><description>Maternal‐fetal genotype (MFG) incompatibility is an interaction between the genes of a mother and offspring at a particular locus that adversely affects the developing fetus, thereby increasing susceptibility to disease. Statistical methods for examining MFG incompatibility as a disease risk factor have been developed for nuclear families. Because families collected as part of a study can be large and complex, containing multiple generations and marriage loops, we create the Extended‐MFG (EMFG) Test, a model‐based likelihood approach, to allow for arbitrary family structures. We modify the MFG test by replacing the nuclear‐family based “mating type” approach with Ott's representation of a pedigree likelihood and calculating MFG incompatibility along with the Mendelian transmission probability. In order to allow for extension to arbitrary family structures, we make a slightly more stringent assumption of random mating with respect to the locus of interest. Simulations show that the EMFG test has appropriate type‐I error rate, power, and precise parameter estimation when random mating holds. Our simulations and real data example illustrate that the chief advantages of the EMFG test over the earlier nuclear family version of the MFG test are improved accuracy of parameter estimation and power gains in the presence of missing genotypes. Genet. Epidemiol. 34: 512–521, 2010.© 2010 Wiley‐Liss, Inc.</description><subject>Alleles</subject><subject>Computer Simulation</subject><subject>family based association</subject><subject>Family Health</subject><subject>Female</subject><subject>gene by environment</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic Testing</subject><subject>Genotype</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>maternal-fetal interaction</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Mothers</subject><subject>Nuclear Family</subject><subject>Pedigree</subject><subject>pedigree likelihood</subject><subject>Pregnancy</subject><subject>Risk Factors</subject><issn>0741-0395</issn><issn>1098-2272</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuEzEQhi0EoqHlwgOgvSEhbfF41vYuB6SqakJQ03KA5mg59mxq2OyG9Ya2b1-HtBFc6MWWPN98-q2fsTfAj4Fz8WFJ63AsuOTlMzYCXpW5EFo8ZyOuC8g5VvKAvYrxB-cARSVfsoMES6FQj9h01nlqQrvMVnagvrVN3tV1XPfbpyW1lG-PLLRpaN0QujZ-zIZryuh2oNaTz2fjSTZQHI7Yi9o2kV4_3Ifs-_js2-nn_PxyMj09Oc9dUaZo2irtNRdeSlk4WChBQqBHkFCjciUXtkaoPDlb4AIXvkR01hNiRU6Sx0P2aeddbxYr8o7aobeNSYlXtr8znQ3m30kbrs2y-20QlATNk-Ddg6Dvfm1ScrMK0VHT2Ja6TTRlWQJHQPUkqRGlUlxBIt_vSNd3MfZU7_MAN9uSzLYk86ekBL_9-wd79LGVBMAOuAkN3f1HZSZnX6eP0ny3E-JAt_sd2_80SqOWZn4xMbPxHK6-XM0Nx3tDSKy3</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Childs, Erica J.</creator><creator>Palmer, Christina G.S.</creator><creator>Lange, Kenneth</creator><creator>Sinsheimer, Janet S.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201007</creationdate><title>Modeling maternal-offspring gene-gene interactions: the extended-MFG test</title><author>Childs, Erica J. ; Palmer, Christina G.S. ; Lange, Kenneth ; Sinsheimer, Janet S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alleles</topic><topic>Computer Simulation</topic><topic>family based association</topic><topic>Family Health</topic><topic>Female</topic><topic>gene by environment</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic Testing</topic><topic>Genotype</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>maternal-fetal interaction</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Mothers</topic><topic>Nuclear Family</topic><topic>Pedigree</topic><topic>pedigree likelihood</topic><topic>Pregnancy</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Childs, Erica J.</creatorcontrib><creatorcontrib>Palmer, Christina G.S.</creatorcontrib><creatorcontrib>Lange, Kenneth</creatorcontrib><creatorcontrib>Sinsheimer, Janet S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Childs, Erica J.</au><au>Palmer, Christina G.S.</au><au>Lange, Kenneth</au><au>Sinsheimer, Janet S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling maternal-offspring gene-gene interactions: the extended-MFG test</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet. Epidemiol</addtitle><date>2010-07</date><risdate>2010</risdate><volume>34</volume><issue>5</issue><spage>512</spage><epage>521</epage><pages>512-521</pages><issn>0741-0395</issn><issn>1098-2272</issn><eissn>1098-2272</eissn><abstract>Maternal‐fetal genotype (MFG) incompatibility is an interaction between the genes of a mother and offspring at a particular locus that adversely affects the developing fetus, thereby increasing susceptibility to disease. Statistical methods for examining MFG incompatibility as a disease risk factor have been developed for nuclear families. Because families collected as part of a study can be large and complex, containing multiple generations and marriage loops, we create the Extended‐MFG (EMFG) Test, a model‐based likelihood approach, to allow for arbitrary family structures. We modify the MFG test by replacing the nuclear‐family based “mating type” approach with Ott's representation of a pedigree likelihood and calculating MFG incompatibility along with the Mendelian transmission probability. In order to allow for extension to arbitrary family structures, we make a slightly more stringent assumption of random mating with respect to the locus of interest. Simulations show that the EMFG test has appropriate type‐I error rate, power, and precise parameter estimation when random mating holds. Our simulations and real data example illustrate that the chief advantages of the EMFG test over the earlier nuclear family version of the MFG test are improved accuracy of parameter estimation and power gains in the presence of missing genotypes. Genet. Epidemiol. 34: 512–521, 2010.© 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20552637</pmid><doi>10.1002/gepi.20508</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0741-0395
ispartof Genetic epidemiology, 2010-07, Vol.34 (5), p.512-521
issn 0741-0395
1098-2272
1098-2272
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3165170
source Wiley-Blackwell Read & Publish Collection
subjects Alleles
Computer Simulation
family based association
Family Health
Female
gene by environment
Genetic Predisposition to Disease
Genetic Testing
Genotype
Humans
Likelihood Functions
maternal-fetal interaction
Models, Genetic
Models, Statistical
Mothers
Nuclear Family
Pedigree
pedigree likelihood
Pregnancy
Risk Factors
title Modeling maternal-offspring gene-gene interactions: the extended-MFG test
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20maternal-offspring%20gene-gene%20interactions:%20the%20extended-MFG%20test&rft.jtitle=Genetic%20epidemiology&rft.au=Childs,%20Erica%20J.&rft.date=2010-07&rft.volume=34&rft.issue=5&rft.spage=512&rft.epage=521&rft.pages=512-521&rft.issn=0741-0395&rft.eissn=1098-2272&rft_id=info:doi/10.1002/gepi.20508&rft_dat=%3Cproquest_pubme%3E733566061%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733566061&rft_id=info:pmid/20552637&rfr_iscdi=true