Loading…
Modeling maternal-offspring gene-gene interactions: the extended-MFG test
Maternal‐fetal genotype (MFG) incompatibility is an interaction between the genes of a mother and offspring at a particular locus that adversely affects the developing fetus, thereby increasing susceptibility to disease. Statistical methods for examining MFG incompatibility as a disease risk factor...
Saved in:
Published in: | Genetic epidemiology 2010-07, Vol.34 (5), p.512-521 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3 |
container_end_page | 521 |
container_issue | 5 |
container_start_page | 512 |
container_title | Genetic epidemiology |
container_volume | 34 |
creator | Childs, Erica J. Palmer, Christina G.S. Lange, Kenneth Sinsheimer, Janet S. |
description | Maternal‐fetal genotype (MFG) incompatibility is an interaction between the genes of a mother and offspring at a particular locus that adversely affects the developing fetus, thereby increasing susceptibility to disease. Statistical methods for examining MFG incompatibility as a disease risk factor have been developed for nuclear families. Because families collected as part of a study can be large and complex, containing multiple generations and marriage loops, we create the Extended‐MFG (EMFG) Test, a model‐based likelihood approach, to allow for arbitrary family structures. We modify the MFG test by replacing the nuclear‐family based “mating type” approach with Ott's representation of a pedigree likelihood and calculating MFG incompatibility along with the Mendelian transmission probability. In order to allow for extension to arbitrary family structures, we make a slightly more stringent assumption of random mating with respect to the locus of interest. Simulations show that the EMFG test has appropriate type‐I error rate, power, and precise parameter estimation when random mating holds. Our simulations and real data example illustrate that the chief advantages of the EMFG test over the earlier nuclear family version of the MFG test are improved accuracy of parameter estimation and power gains in the presence of missing genotypes. Genet. Epidemiol. 34: 512–521, 2010.© 2010 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/gepi.20508 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3165170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733566061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhi0EoqHlwgOgvSEhbfF41vYuB6SqakJQ03KA5mg59mxq2OyG9Ya2b1-HtBFc6MWWPN98-q2fsTfAj4Fz8WFJ63AsuOTlMzYCXpW5EFo8ZyOuC8g5VvKAvYrxB-cARSVfsoMES6FQj9h01nlqQrvMVnagvrVN3tV1XPfbpyW1lG-PLLRpaN0QujZ-zIZryuh2oNaTz2fjSTZQHI7Yi9o2kV4_3Ifs-_js2-nn_PxyMj09Oc9dUaZo2irtNRdeSlk4WChBQqBHkFCjciUXtkaoPDlb4AIXvkR01hNiRU6Sx0P2aeddbxYr8o7aobeNSYlXtr8znQ3m30kbrs2y-20QlATNk-Ddg6Dvfm1ScrMK0VHT2Ja6TTRlWQJHQPUkqRGlUlxBIt_vSNd3MfZU7_MAN9uSzLYk86ekBL_9-wd79LGVBMAOuAkN3f1HZSZnX6eP0ny3E-JAt_sd2_80SqOWZn4xMbPxHK6-XM0Nx3tDSKy3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733566061</pqid></control><display><type>article</type><title>Modeling maternal-offspring gene-gene interactions: the extended-MFG test</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Childs, Erica J. ; Palmer, Christina G.S. ; Lange, Kenneth ; Sinsheimer, Janet S.</creator><creatorcontrib>Childs, Erica J. ; Palmer, Christina G.S. ; Lange, Kenneth ; Sinsheimer, Janet S.</creatorcontrib><description>Maternal‐fetal genotype (MFG) incompatibility is an interaction between the genes of a mother and offspring at a particular locus that adversely affects the developing fetus, thereby increasing susceptibility to disease. Statistical methods for examining MFG incompatibility as a disease risk factor have been developed for nuclear families. Because families collected as part of a study can be large and complex, containing multiple generations and marriage loops, we create the Extended‐MFG (EMFG) Test, a model‐based likelihood approach, to allow for arbitrary family structures. We modify the MFG test by replacing the nuclear‐family based “mating type” approach with Ott's representation of a pedigree likelihood and calculating MFG incompatibility along with the Mendelian transmission probability. In order to allow for extension to arbitrary family structures, we make a slightly more stringent assumption of random mating with respect to the locus of interest. Simulations show that the EMFG test has appropriate type‐I error rate, power, and precise parameter estimation when random mating holds. Our simulations and real data example illustrate that the chief advantages of the EMFG test over the earlier nuclear family version of the MFG test are improved accuracy of parameter estimation and power gains in the presence of missing genotypes. Genet. Epidemiol. 34: 512–521, 2010.© 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 0741-0395</identifier><identifier>ISSN: 1098-2272</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.20508</identifier><identifier>PMID: 20552637</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alleles ; Computer Simulation ; family based association ; Family Health ; Female ; gene by environment ; Genetic Predisposition to Disease ; Genetic Testing ; Genotype ; Humans ; Likelihood Functions ; maternal-fetal interaction ; Models, Genetic ; Models, Statistical ; Mothers ; Nuclear Family ; Pedigree ; pedigree likelihood ; Pregnancy ; Risk Factors</subject><ispartof>Genetic epidemiology, 2010-07, Vol.34 (5), p.512-521</ispartof><rights>2010 Wiley‐Liss, Inc.</rights><rights>(c) 2010 Wiley-Liss, Inc.</rights><rights>2010 Wiley-Liss, Inc. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3</citedby><cites>FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20552637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Childs, Erica J.</creatorcontrib><creatorcontrib>Palmer, Christina G.S.</creatorcontrib><creatorcontrib>Lange, Kenneth</creatorcontrib><creatorcontrib>Sinsheimer, Janet S.</creatorcontrib><title>Modeling maternal-offspring gene-gene interactions: the extended-MFG test</title><title>Genetic epidemiology</title><addtitle>Genet. Epidemiol</addtitle><description>Maternal‐fetal genotype (MFG) incompatibility is an interaction between the genes of a mother and offspring at a particular locus that adversely affects the developing fetus, thereby increasing susceptibility to disease. Statistical methods for examining MFG incompatibility as a disease risk factor have been developed for nuclear families. Because families collected as part of a study can be large and complex, containing multiple generations and marriage loops, we create the Extended‐MFG (EMFG) Test, a model‐based likelihood approach, to allow for arbitrary family structures. We modify the MFG test by replacing the nuclear‐family based “mating type” approach with Ott's representation of a pedigree likelihood and calculating MFG incompatibility along with the Mendelian transmission probability. In order to allow for extension to arbitrary family structures, we make a slightly more stringent assumption of random mating with respect to the locus of interest. Simulations show that the EMFG test has appropriate type‐I error rate, power, and precise parameter estimation when random mating holds. Our simulations and real data example illustrate that the chief advantages of the EMFG test over the earlier nuclear family version of the MFG test are improved accuracy of parameter estimation and power gains in the presence of missing genotypes. Genet. Epidemiol. 34: 512–521, 2010.© 2010 Wiley‐Liss, Inc.</description><subject>Alleles</subject><subject>Computer Simulation</subject><subject>family based association</subject><subject>Family Health</subject><subject>Female</subject><subject>gene by environment</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic Testing</subject><subject>Genotype</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>maternal-fetal interaction</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Mothers</subject><subject>Nuclear Family</subject><subject>Pedigree</subject><subject>pedigree likelihood</subject><subject>Pregnancy</subject><subject>Risk Factors</subject><issn>0741-0395</issn><issn>1098-2272</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuEzEQhi0EoqHlwgOgvSEhbfF41vYuB6SqakJQ03KA5mg59mxq2OyG9Ya2b1-HtBFc6MWWPN98-q2fsTfAj4Fz8WFJ63AsuOTlMzYCXpW5EFo8ZyOuC8g5VvKAvYrxB-cARSVfsoMES6FQj9h01nlqQrvMVnagvrVN3tV1XPfbpyW1lG-PLLRpaN0QujZ-zIZryuh2oNaTz2fjSTZQHI7Yi9o2kV4_3Ifs-_js2-nn_PxyMj09Oc9dUaZo2irtNRdeSlk4WChBQqBHkFCjciUXtkaoPDlb4AIXvkR01hNiRU6Sx0P2aeddbxYr8o7aobeNSYlXtr8znQ3m30kbrs2y-20QlATNk-Ddg6Dvfm1ScrMK0VHT2Ja6TTRlWQJHQPUkqRGlUlxBIt_vSNd3MfZU7_MAN9uSzLYk86ekBL_9-wd79LGVBMAOuAkN3f1HZSZnX6eP0ny3E-JAt_sd2_80SqOWZn4xMbPxHK6-XM0Nx3tDSKy3</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Childs, Erica J.</creator><creator>Palmer, Christina G.S.</creator><creator>Lange, Kenneth</creator><creator>Sinsheimer, Janet S.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201007</creationdate><title>Modeling maternal-offspring gene-gene interactions: the extended-MFG test</title><author>Childs, Erica J. ; Palmer, Christina G.S. ; Lange, Kenneth ; Sinsheimer, Janet S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alleles</topic><topic>Computer Simulation</topic><topic>family based association</topic><topic>Family Health</topic><topic>Female</topic><topic>gene by environment</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic Testing</topic><topic>Genotype</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>maternal-fetal interaction</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Mothers</topic><topic>Nuclear Family</topic><topic>Pedigree</topic><topic>pedigree likelihood</topic><topic>Pregnancy</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Childs, Erica J.</creatorcontrib><creatorcontrib>Palmer, Christina G.S.</creatorcontrib><creatorcontrib>Lange, Kenneth</creatorcontrib><creatorcontrib>Sinsheimer, Janet S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Childs, Erica J.</au><au>Palmer, Christina G.S.</au><au>Lange, Kenneth</au><au>Sinsheimer, Janet S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling maternal-offspring gene-gene interactions: the extended-MFG test</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet. Epidemiol</addtitle><date>2010-07</date><risdate>2010</risdate><volume>34</volume><issue>5</issue><spage>512</spage><epage>521</epage><pages>512-521</pages><issn>0741-0395</issn><issn>1098-2272</issn><eissn>1098-2272</eissn><abstract>Maternal‐fetal genotype (MFG) incompatibility is an interaction between the genes of a mother and offspring at a particular locus that adversely affects the developing fetus, thereby increasing susceptibility to disease. Statistical methods for examining MFG incompatibility as a disease risk factor have been developed for nuclear families. Because families collected as part of a study can be large and complex, containing multiple generations and marriage loops, we create the Extended‐MFG (EMFG) Test, a model‐based likelihood approach, to allow for arbitrary family structures. We modify the MFG test by replacing the nuclear‐family based “mating type” approach with Ott's representation of a pedigree likelihood and calculating MFG incompatibility along with the Mendelian transmission probability. In order to allow for extension to arbitrary family structures, we make a slightly more stringent assumption of random mating with respect to the locus of interest. Simulations show that the EMFG test has appropriate type‐I error rate, power, and precise parameter estimation when random mating holds. Our simulations and real data example illustrate that the chief advantages of the EMFG test over the earlier nuclear family version of the MFG test are improved accuracy of parameter estimation and power gains in the presence of missing genotypes. Genet. Epidemiol. 34: 512–521, 2010.© 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20552637</pmid><doi>10.1002/gepi.20508</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-0395 |
ispartof | Genetic epidemiology, 2010-07, Vol.34 (5), p.512-521 |
issn | 0741-0395 1098-2272 1098-2272 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3165170 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Alleles Computer Simulation family based association Family Health Female gene by environment Genetic Predisposition to Disease Genetic Testing Genotype Humans Likelihood Functions maternal-fetal interaction Models, Genetic Models, Statistical Mothers Nuclear Family Pedigree pedigree likelihood Pregnancy Risk Factors |
title | Modeling maternal-offspring gene-gene interactions: the extended-MFG test |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20maternal-offspring%20gene-gene%20interactions:%20the%20extended-MFG%20test&rft.jtitle=Genetic%20epidemiology&rft.au=Childs,%20Erica%20J.&rft.date=2010-07&rft.volume=34&rft.issue=5&rft.spage=512&rft.epage=521&rft.pages=512-521&rft.issn=0741-0395&rft.eissn=1098-2272&rft_id=info:doi/10.1002/gepi.20508&rft_dat=%3Cproquest_pubme%3E733566061%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4898-7a67d702d5554c1b62e223d3151f36c802af319deca43b3bd833cade339ec5ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733566061&rft_id=info:pmid/20552637&rfr_iscdi=true |