Loading…
Transport of a soft cargo on a nanoscale ratchet
Surface ratchets can guide droplet transport for microfluidic systems. Here, we demonstrated the actuation of microgels encapsulated in droplets using a unidirectional nanotextured surface, which moves droplets with low vibration amplitudes by a ratcheting mechanism. The nanofilm carries droplets al...
Saved in:
Published in: | Applied physics letters 2011-08, Vol.99 (6), p.063703-063703-3 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Surface ratchets can guide droplet transport for microfluidic systems. Here, we demonstrated the actuation of microgels encapsulated in droplets using a unidirectional nanotextured surface, which moves droplets with low vibration amplitudes by a ratcheting mechanism. The nanofilm carries droplets along the ratchets with minimal drop shape deformation to move the encapsulated soft cargo, i.e., microscale hydrogels. The tilted nanorods of the nanofilm produce unidirectional wetting, thereby enabling droplet motion in a single direction. Maximum droplet translation speed on the nanofilm was determined to be 3.5 mm/s, which offers a pathway towards high throughput microgel assembly applications to build complex constructs. |
---|---|
ISSN: | 0003-6951 1077-3118 0003-6951 |
DOI: | 10.1063/1.3625430 |