Loading…

Apnea promotes glutamate-induced excitotoxicity in hippocampal neurons

Abstract Patients with obstructive sleep apnea (OSA) exhibit hippocampal damage and cognitive deficits. To determine the effect of apnea on the synaptic transmission in the hippocampus, we performed electrophysiological studies in an in vivo guinea pig model of OSA. Specifically, we determined the c...

Full description

Saved in:
Bibliographic Details
Published in:Brain research 2007-11, Vol.1179, p.42-50
Main Authors: Fung, Simon J, Xi, Ming-Chu, Zhang, Jian-Hua, Sampogna, Sharon, Yamuy, Jack, Morales, Francisco R, Chase, Michael H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Patients with obstructive sleep apnea (OSA) exhibit hippocampal damage and cognitive deficits. To determine the effect of apnea on the synaptic transmission in the hippocampus, we performed electrophysiological studies in an in vivo guinea pig model of OSA. Specifically, we determined the cornu ammonis region 1 (CA1) field excitatory postsynaptic potential (fEPSP) response to cornu ammonis region 3 (CA3) stimulation and examined the presynaptic mechanisms underlying the changes in the fEPSP. Single episodes of apnea resulted in a maximal potentiation of the fEPSPs at 1 to 3 min after the termination of each episode of apnea. The mean amplitude and slope of the post-apneic fEPSP was significantly larger compared with the pre-apneic control. These changes were accompanied by a significant decrease in the paired-pulse facilitation ratio during the post-apneic period compared with the pre-apneic control. The N -methyl- d -aspartate (NMDA) glutamate receptor antagonist MK-801, when applied locally to the CA1 recording site by pressure ejection, blocked the apnea-induced potentiation of the fEPSP. In the experimental animals that were subjected to extended periods of recurrent apnea, CA1 neurons exhibited positive immunoreactivity for fragmented DNA strands, which indicates apoptotic cell death. The present results demonstrate that apnea-induced potentiation of the hippocampal CA1 fEPSP is mediated by an NMDA receptor mechanism. We therefore conclude that recurrent apnea produces abnormally high levels of glutamate that results in the apoptosis of CA1 neurons. We hypothesize that this damage is reflected by the cognitive deficits that are commonly observed in patients with breathing disorders such as OSA.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2007.08.044