Loading…
Unlinking of Supercoiled DNA Catenanes by Type IIA Topoisomerases
It was found recently that DNA catenanes, formed during replication of circular plasmids, become positively (+) supercoiled, and the unlinking of such catenanes by type IIA topoisomerases proceeds much more efficiently than the unlinking of negatively (−) supercoiled catenanes. In an attempt to expl...
Saved in:
Published in: | Biophysical journal 2011-09, Vol.101 (6), p.1403-1411 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It was found recently that DNA catenanes, formed during replication of circular plasmids, become positively (+) supercoiled, and the unlinking of such catenanes by type IIA topoisomerases proceeds much more efficiently than the unlinking of negatively (−) supercoiled catenanes. In an attempt to explain this striking finding we studied, by computer simulation, conformational properties of supercoiled DNA catenanes. Although the simulation showed that conformational properties of (+) and (−) supercoiled replication catenanes are very different, these properties per se do not give any advantage to (+) supercoiled over (−) supercoiled DNA catenanes for unlinking. An advantage became evident, however, when we took into account the established features of the enzymatic reaction catalyzed by the topoisomerases. The enzymes create a sharp DNA bend in the first bound DNA segment and allow for the transport of the second segment only from inside the bend to its outside. We showed that in (−) supercoiled DNA catenanes this protein-bound bent segment becomes nearly inaccessible for segments of the other linked DNA molecule, inhibiting the unlinking. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/j.bpj.2011.08.011 |