Loading…

A new family of bacterial condensins

Summary Condensins play a central role in global chromatin organization. In bacteria, two families of condensins have been identified, the MukBEF and SMC–ScpAB complexes. Only one of the two complexes is usually found in a given species, giving rise to a paradigm that a single condensin organizes ba...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 2011-08, Vol.81 (4), p.881-896
Main Authors: Petrushenko, Zoya M., She, Weifeng, Rybenkov, Valentin V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203
cites cdi_FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203
container_end_page 896
container_issue 4
container_start_page 881
container_title Molecular microbiology
container_volume 81
creator Petrushenko, Zoya M.
She, Weifeng
Rybenkov, Valentin V.
description Summary Condensins play a central role in global chromatin organization. In bacteria, two families of condensins have been identified, the MukBEF and SMC–ScpAB complexes. Only one of the two complexes is usually found in a given species, giving rise to a paradigm that a single condensin organizes bacterial chromosomes. Using sequence analysis, we identified a third family of condensins, MksBEF (MukBEF‐like SMC proteins), which is broadly present in diverse bacteria. The proteins appear distantly related to MukBEF, have a similar operon organization and similar predicted secondary structures albeit with notably shorter coiled‐coils. All three subunits of MksBEF exhibit significant sequence variation and can be divided into a series of overlapping subfamilies. MksBEF often coexists with the SMC–ScpAB, MukBEF and, sometimes, other MksBEFs. In Pseudomonas aeruginosa, both SMC and MksB contribute to faithful chromosome partitioning, with their inactivation leading to increased frequencies of anucleate cells. Moreover, MksBEF can complement anucleate cell formation in SMC‐deficient cells. Purified PaMksB showed activities typical for condensins including ATP‐modulated DNA binding and condensation. Notably, DNA binding by MksB is negatively regulated by ATP, which sets it apart from other known SMC proteins. Thus, several specialized condensins might be involved in organization of bacterial chromosomes.
doi_str_mv 10.1111/j.1365-2958.2011.07763.x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3179180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883313377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhi3UCpaPv4CiqhVcEjx2EtsHkBCCFgnEBSRuluPY1KusA_Zul_33OOx2aTkgfLGlefxqZh6EMsAFpHM0LoDWVU5ExQuCAQrMWE2L5w00Whe-oBEWFc4pJ_dbaDvGMcZAcU030RYBVhHAbIS-n2bezDOrJq5bZL3NGqWnJjjVZbr3rfHR-biLvlrVRbO3unfQ3cX57dmv_Orm5-XZ6VWuq5rSXDMgDBtihBLMEtEqoptWt2XDmOG21aZRtFW0AqZI3bJSYGGtbqAhgnOC6Q46WeY-zpqJSbyfBtXJx-AmKixkr5z8v-Ldb_nQ_5EUmAA-BBysAkL_NDNxKicuatN1ypt-FiXnlAKljCXy8EMSMOGYVfw19Ns7dNzPgk-LSHklF2mrZYL4EtKhjzEYu-4asBycybEc1MhBjRycyVdn8jl93f936vXHv5IS8GMFqKhVZ4Py2sU3riwB0kiJO15yc9eZxacbkNfXl8OLvgAMJrEV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884890134</pqid></control><display><type>article</type><title>A new family of bacterial condensins</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Petrushenko, Zoya M. ; She, Weifeng ; Rybenkov, Valentin V.</creator><creatorcontrib>Petrushenko, Zoya M. ; She, Weifeng ; Rybenkov, Valentin V.</creatorcontrib><description>Summary Condensins play a central role in global chromatin organization. In bacteria, two families of condensins have been identified, the MukBEF and SMC–ScpAB complexes. Only one of the two complexes is usually found in a given species, giving rise to a paradigm that a single condensin organizes bacterial chromosomes. Using sequence analysis, we identified a third family of condensins, MksBEF (MukBEF‐like SMC proteins), which is broadly present in diverse bacteria. The proteins appear distantly related to MukBEF, have a similar operon organization and similar predicted secondary structures albeit with notably shorter coiled‐coils. All three subunits of MksBEF exhibit significant sequence variation and can be divided into a series of overlapping subfamilies. MksBEF often coexists with the SMC–ScpAB, MukBEF and, sometimes, other MksBEFs. In Pseudomonas aeruginosa, both SMC and MksB contribute to faithful chromosome partitioning, with their inactivation leading to increased frequencies of anucleate cells. Moreover, MksBEF can complement anucleate cell formation in SMC‐deficient cells. Purified PaMksB showed activities typical for condensins including ATP‐modulated DNA binding and condensation. Notably, DNA binding by MksB is negatively regulated by ATP, which sets it apart from other known SMC proteins. Thus, several specialized condensins might be involved in organization of bacterial chromosomes.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2011.07763.x</identifier><identifier>PMID: 21752107</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - isolation &amp; purification ; Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - metabolism ; Bacteria ; Bacteriology ; Biological and medical sciences ; Cells ; Chromatin ; Chromosome Segregation ; Chromosomes ; Chromosomes, Bacterial - metabolism ; Cluster Analysis ; Deoxyribonucleic acid ; DNA ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - isolation &amp; purification ; DNA-Binding Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Microbiology ; Miscellaneous ; Models, Biological ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - genetics ; Multiprotein Complexes - isolation &amp; purification ; Multiprotein Complexes - metabolism ; Operon ; Polymorphism, Genetic ; Protein Binding ; Protein Structure, Secondary ; Protein Subunits - genetics ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - physiology ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid</subject><ispartof>Molecular microbiology, 2011-08, Vol.81 (4), p.881-896</ispartof><rights>2011 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2011 Blackwell Publishing Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203</citedby><cites>FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24411773$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21752107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrushenko, Zoya M.</creatorcontrib><creatorcontrib>She, Weifeng</creatorcontrib><creatorcontrib>Rybenkov, Valentin V.</creatorcontrib><title>A new family of bacterial condensins</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Condensins play a central role in global chromatin organization. In bacteria, two families of condensins have been identified, the MukBEF and SMC–ScpAB complexes. Only one of the two complexes is usually found in a given species, giving rise to a paradigm that a single condensin organizes bacterial chromosomes. Using sequence analysis, we identified a third family of condensins, MksBEF (MukBEF‐like SMC proteins), which is broadly present in diverse bacteria. The proteins appear distantly related to MukBEF, have a similar operon organization and similar predicted secondary structures albeit with notably shorter coiled‐coils. All three subunits of MksBEF exhibit significant sequence variation and can be divided into a series of overlapping subfamilies. MksBEF often coexists with the SMC–ScpAB, MukBEF and, sometimes, other MksBEFs. In Pseudomonas aeruginosa, both SMC and MksB contribute to faithful chromosome partitioning, with their inactivation leading to increased frequencies of anucleate cells. Moreover, MksBEF can complement anucleate cell formation in SMC‐deficient cells. Purified PaMksB showed activities typical for condensins including ATP‐modulated DNA binding and condensation. Notably, DNA binding by MksB is negatively regulated by ATP, which sets it apart from other known SMC proteins. Thus, several specialized condensins might be involved in organization of bacterial chromosomes.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - isolation &amp; purification</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Cells</subject><subject>Chromatin</subject><subject>Chromosome Segregation</subject><subject>Chromosomes</subject><subject>Chromosomes, Bacterial - metabolism</subject><subject>Cluster Analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - isolation &amp; purification</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Models, Biological</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - isolation &amp; purification</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Operon</subject><subject>Polymorphism, Genetic</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Subunits - genetics</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Sequence Analysis, DNA</subject><subject>Sequence Homology, Amino Acid</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU1P3DAQhi3UCpaPv4CiqhVcEjx2EtsHkBCCFgnEBSRuluPY1KusA_Zul_33OOx2aTkgfLGlefxqZh6EMsAFpHM0LoDWVU5ExQuCAQrMWE2L5w00Whe-oBEWFc4pJ_dbaDvGMcZAcU030RYBVhHAbIS-n2bezDOrJq5bZL3NGqWnJjjVZbr3rfHR-biLvlrVRbO3unfQ3cX57dmv_Orm5-XZ6VWuq5rSXDMgDBtihBLMEtEqoptWt2XDmOG21aZRtFW0AqZI3bJSYGGtbqAhgnOC6Q46WeY-zpqJSbyfBtXJx-AmKixkr5z8v-Ldb_nQ_5EUmAA-BBysAkL_NDNxKicuatN1ypt-FiXnlAKljCXy8EMSMOGYVfw19Ns7dNzPgk-LSHklF2mrZYL4EtKhjzEYu-4asBycybEc1MhBjRycyVdn8jl93f936vXHv5IS8GMFqKhVZ4Py2sU3riwB0kiJO15yc9eZxacbkNfXl8OLvgAMJrEV</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Petrushenko, Zoya M.</creator><creator>She, Weifeng</creator><creator>Rybenkov, Valentin V.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201108</creationdate><title>A new family of bacterial condensins</title><author>Petrushenko, Zoya M. ; She, Weifeng ; Rybenkov, Valentin V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - isolation &amp; purification</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Cells</topic><topic>Chromatin</topic><topic>Chromosome Segregation</topic><topic>Chromosomes</topic><topic>Chromosomes, Bacterial - metabolism</topic><topic>Cluster Analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - isolation &amp; purification</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Models, Biological</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - isolation &amp; purification</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Operon</topic><topic>Polymorphism, Genetic</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Subunits - genetics</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Sequence Analysis, DNA</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrushenko, Zoya M.</creatorcontrib><creatorcontrib>She, Weifeng</creatorcontrib><creatorcontrib>Rybenkov, Valentin V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrushenko, Zoya M.</au><au>She, Weifeng</au><au>Rybenkov, Valentin V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new family of bacterial condensins</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2011-08</date><risdate>2011</risdate><volume>81</volume><issue>4</issue><spage>881</spage><epage>896</epage><pages>881-896</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary Condensins play a central role in global chromatin organization. In bacteria, two families of condensins have been identified, the MukBEF and SMC–ScpAB complexes. Only one of the two complexes is usually found in a given species, giving rise to a paradigm that a single condensin organizes bacterial chromosomes. Using sequence analysis, we identified a third family of condensins, MksBEF (MukBEF‐like SMC proteins), which is broadly present in diverse bacteria. The proteins appear distantly related to MukBEF, have a similar operon organization and similar predicted secondary structures albeit with notably shorter coiled‐coils. All three subunits of MksBEF exhibit significant sequence variation and can be divided into a series of overlapping subfamilies. MksBEF often coexists with the SMC–ScpAB, MukBEF and, sometimes, other MksBEFs. In Pseudomonas aeruginosa, both SMC and MksB contribute to faithful chromosome partitioning, with their inactivation leading to increased frequencies of anucleate cells. Moreover, MksBEF can complement anucleate cell formation in SMC‐deficient cells. Purified PaMksB showed activities typical for condensins including ATP‐modulated DNA binding and condensation. Notably, DNA binding by MksB is negatively regulated by ATP, which sets it apart from other known SMC proteins. Thus, several specialized condensins might be involved in organization of bacterial chromosomes.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21752107</pmid><doi>10.1111/j.1365-2958.2011.07763.x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2011-08, Vol.81 (4), p.881-896
issn 0950-382X
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3179180
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Adenosine Triphosphatases - chemistry
Adenosine Triphosphatases - genetics
Adenosine Triphosphatases - isolation & purification
Adenosine Triphosphatases - metabolism
Adenosine Triphosphate - metabolism
Bacteria
Bacteriology
Biological and medical sciences
Cells
Chromatin
Chromosome Segregation
Chromosomes
Chromosomes, Bacterial - metabolism
Cluster Analysis
Deoxyribonucleic acid
DNA
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - isolation & purification
DNA-Binding Proteins - metabolism
Fundamental and applied biological sciences. Psychology
Microbiology
Miscellaneous
Models, Biological
Multiprotein Complexes - chemistry
Multiprotein Complexes - genetics
Multiprotein Complexes - isolation & purification
Multiprotein Complexes - metabolism
Operon
Polymorphism, Genetic
Protein Binding
Protein Structure, Secondary
Protein Subunits - genetics
Pseudomonas aeruginosa
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - physiology
Sequence Analysis, DNA
Sequence Homology, Amino Acid
title A new family of bacterial condensins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20family%20of%20bacterial%20condensins&rft.jtitle=Molecular%20microbiology&rft.au=Petrushenko,%20Zoya%20M.&rft.date=2011-08&rft.volume=81&rft.issue=4&rft.spage=881&rft.epage=896&rft.pages=881-896&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2011.07763.x&rft_dat=%3Cproquest_pubme%3E883313377%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884890134&rft_id=info:pmid/21752107&rfr_iscdi=true