Loading…
A new family of bacterial condensins
Summary Condensins play a central role in global chromatin organization. In bacteria, two families of condensins have been identified, the MukBEF and SMC–ScpAB complexes. Only one of the two complexes is usually found in a given species, giving rise to a paradigm that a single condensin organizes ba...
Saved in:
Published in: | Molecular microbiology 2011-08, Vol.81 (4), p.881-896 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203 |
---|---|
cites | cdi_FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203 |
container_end_page | 896 |
container_issue | 4 |
container_start_page | 881 |
container_title | Molecular microbiology |
container_volume | 81 |
creator | Petrushenko, Zoya M. She, Weifeng Rybenkov, Valentin V. |
description | Summary
Condensins play a central role in global chromatin organization. In bacteria, two families of condensins have been identified, the MukBEF and SMC–ScpAB complexes. Only one of the two complexes is usually found in a given species, giving rise to a paradigm that a single condensin organizes bacterial chromosomes. Using sequence analysis, we identified a third family of condensins, MksBEF (MukBEF‐like SMC proteins), which is broadly present in diverse bacteria. The proteins appear distantly related to MukBEF, have a similar operon organization and similar predicted secondary structures albeit with notably shorter coiled‐coils. All three subunits of MksBEF exhibit significant sequence variation and can be divided into a series of overlapping subfamilies. MksBEF often coexists with the SMC–ScpAB, MukBEF and, sometimes, other MksBEFs. In Pseudomonas aeruginosa, both SMC and MksB contribute to faithful chromosome partitioning, with their inactivation leading to increased frequencies of anucleate cells. Moreover, MksBEF can complement anucleate cell formation in SMC‐deficient cells. Purified PaMksB showed activities typical for condensins including ATP‐modulated DNA binding and condensation. Notably, DNA binding by MksB is negatively regulated by ATP, which sets it apart from other known SMC proteins. Thus, several specialized condensins might be involved in organization of bacterial chromosomes. |
doi_str_mv | 10.1111/j.1365-2958.2011.07763.x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3179180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883313377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhi3UCpaPv4CiqhVcEjx2EtsHkBCCFgnEBSRuluPY1KusA_Zul_33OOx2aTkgfLGlefxqZh6EMsAFpHM0LoDWVU5ExQuCAQrMWE2L5w00Whe-oBEWFc4pJ_dbaDvGMcZAcU030RYBVhHAbIS-n2bezDOrJq5bZL3NGqWnJjjVZbr3rfHR-biLvlrVRbO3unfQ3cX57dmv_Orm5-XZ6VWuq5rSXDMgDBtihBLMEtEqoptWt2XDmOG21aZRtFW0AqZI3bJSYGGtbqAhgnOC6Q46WeY-zpqJSbyfBtXJx-AmKixkr5z8v-Ldb_nQ_5EUmAA-BBysAkL_NDNxKicuatN1ypt-FiXnlAKljCXy8EMSMOGYVfw19Ns7dNzPgk-LSHklF2mrZYL4EtKhjzEYu-4asBycybEc1MhBjRycyVdn8jl93f936vXHv5IS8GMFqKhVZ4Py2sU3riwB0kiJO15yc9eZxacbkNfXl8OLvgAMJrEV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884890134</pqid></control><display><type>article</type><title>A new family of bacterial condensins</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Petrushenko, Zoya M. ; She, Weifeng ; Rybenkov, Valentin V.</creator><creatorcontrib>Petrushenko, Zoya M. ; She, Weifeng ; Rybenkov, Valentin V.</creatorcontrib><description>Summary
Condensins play a central role in global chromatin organization. In bacteria, two families of condensins have been identified, the MukBEF and SMC–ScpAB complexes. Only one of the two complexes is usually found in a given species, giving rise to a paradigm that a single condensin organizes bacterial chromosomes. Using sequence analysis, we identified a third family of condensins, MksBEF (MukBEF‐like SMC proteins), which is broadly present in diverse bacteria. The proteins appear distantly related to MukBEF, have a similar operon organization and similar predicted secondary structures albeit with notably shorter coiled‐coils. All three subunits of MksBEF exhibit significant sequence variation and can be divided into a series of overlapping subfamilies. MksBEF often coexists with the SMC–ScpAB, MukBEF and, sometimes, other MksBEFs. In Pseudomonas aeruginosa, both SMC and MksB contribute to faithful chromosome partitioning, with their inactivation leading to increased frequencies of anucleate cells. Moreover, MksBEF can complement anucleate cell formation in SMC‐deficient cells. Purified PaMksB showed activities typical for condensins including ATP‐modulated DNA binding and condensation. Notably, DNA binding by MksB is negatively regulated by ATP, which sets it apart from other known SMC proteins. Thus, several specialized condensins might be involved in organization of bacterial chromosomes.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2011.07763.x</identifier><identifier>PMID: 21752107</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - isolation & purification ; Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - metabolism ; Bacteria ; Bacteriology ; Biological and medical sciences ; Cells ; Chromatin ; Chromosome Segregation ; Chromosomes ; Chromosomes, Bacterial - metabolism ; Cluster Analysis ; Deoxyribonucleic acid ; DNA ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - isolation & purification ; DNA-Binding Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Microbiology ; Miscellaneous ; Models, Biological ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - genetics ; Multiprotein Complexes - isolation & purification ; Multiprotein Complexes - metabolism ; Operon ; Polymorphism, Genetic ; Protein Binding ; Protein Structure, Secondary ; Protein Subunits - genetics ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - physiology ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid</subject><ispartof>Molecular microbiology, 2011-08, Vol.81 (4), p.881-896</ispartof><rights>2011 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2011 Blackwell Publishing Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203</citedby><cites>FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24411773$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21752107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrushenko, Zoya M.</creatorcontrib><creatorcontrib>She, Weifeng</creatorcontrib><creatorcontrib>Rybenkov, Valentin V.</creatorcontrib><title>A new family of bacterial condensins</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
Condensins play a central role in global chromatin organization. In bacteria, two families of condensins have been identified, the MukBEF and SMC–ScpAB complexes. Only one of the two complexes is usually found in a given species, giving rise to a paradigm that a single condensin organizes bacterial chromosomes. Using sequence analysis, we identified a third family of condensins, MksBEF (MukBEF‐like SMC proteins), which is broadly present in diverse bacteria. The proteins appear distantly related to MukBEF, have a similar operon organization and similar predicted secondary structures albeit with notably shorter coiled‐coils. All three subunits of MksBEF exhibit significant sequence variation and can be divided into a series of overlapping subfamilies. MksBEF often coexists with the SMC–ScpAB, MukBEF and, sometimes, other MksBEFs. In Pseudomonas aeruginosa, both SMC and MksB contribute to faithful chromosome partitioning, with their inactivation leading to increased frequencies of anucleate cells. Moreover, MksBEF can complement anucleate cell formation in SMC‐deficient cells. Purified PaMksB showed activities typical for condensins including ATP‐modulated DNA binding and condensation. Notably, DNA binding by MksB is negatively regulated by ATP, which sets it apart from other known SMC proteins. Thus, several specialized condensins might be involved in organization of bacterial chromosomes.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - isolation & purification</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Cells</subject><subject>Chromatin</subject><subject>Chromosome Segregation</subject><subject>Chromosomes</subject><subject>Chromosomes, Bacterial - metabolism</subject><subject>Cluster Analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - isolation & purification</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Models, Biological</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - isolation & purification</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Operon</subject><subject>Polymorphism, Genetic</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Subunits - genetics</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Sequence Analysis, DNA</subject><subject>Sequence Homology, Amino Acid</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU1P3DAQhi3UCpaPv4CiqhVcEjx2EtsHkBCCFgnEBSRuluPY1KusA_Zul_33OOx2aTkgfLGlefxqZh6EMsAFpHM0LoDWVU5ExQuCAQrMWE2L5w00Whe-oBEWFc4pJ_dbaDvGMcZAcU030RYBVhHAbIS-n2bezDOrJq5bZL3NGqWnJjjVZbr3rfHR-biLvlrVRbO3unfQ3cX57dmv_Orm5-XZ6VWuq5rSXDMgDBtihBLMEtEqoptWt2XDmOG21aZRtFW0AqZI3bJSYGGtbqAhgnOC6Q46WeY-zpqJSbyfBtXJx-AmKixkr5z8v-Ldb_nQ_5EUmAA-BBysAkL_NDNxKicuatN1ypt-FiXnlAKljCXy8EMSMOGYVfw19Ns7dNzPgk-LSHklF2mrZYL4EtKhjzEYu-4asBycybEc1MhBjRycyVdn8jl93f936vXHv5IS8GMFqKhVZ4Py2sU3riwB0kiJO15yc9eZxacbkNfXl8OLvgAMJrEV</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Petrushenko, Zoya M.</creator><creator>She, Weifeng</creator><creator>Rybenkov, Valentin V.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201108</creationdate><title>A new family of bacterial condensins</title><author>Petrushenko, Zoya M. ; She, Weifeng ; Rybenkov, Valentin V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - isolation & purification</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Cells</topic><topic>Chromatin</topic><topic>Chromosome Segregation</topic><topic>Chromosomes</topic><topic>Chromosomes, Bacterial - metabolism</topic><topic>Cluster Analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - isolation & purification</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Models, Biological</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - isolation & purification</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Operon</topic><topic>Polymorphism, Genetic</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Subunits - genetics</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Sequence Analysis, DNA</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrushenko, Zoya M.</creatorcontrib><creatorcontrib>She, Weifeng</creatorcontrib><creatorcontrib>Rybenkov, Valentin V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrushenko, Zoya M.</au><au>She, Weifeng</au><au>Rybenkov, Valentin V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new family of bacterial condensins</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2011-08</date><risdate>2011</risdate><volume>81</volume><issue>4</issue><spage>881</spage><epage>896</epage><pages>881-896</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
Condensins play a central role in global chromatin organization. In bacteria, two families of condensins have been identified, the MukBEF and SMC–ScpAB complexes. Only one of the two complexes is usually found in a given species, giving rise to a paradigm that a single condensin organizes bacterial chromosomes. Using sequence analysis, we identified a third family of condensins, MksBEF (MukBEF‐like SMC proteins), which is broadly present in diverse bacteria. The proteins appear distantly related to MukBEF, have a similar operon organization and similar predicted secondary structures albeit with notably shorter coiled‐coils. All three subunits of MksBEF exhibit significant sequence variation and can be divided into a series of overlapping subfamilies. MksBEF often coexists with the SMC–ScpAB, MukBEF and, sometimes, other MksBEFs. In Pseudomonas aeruginosa, both SMC and MksB contribute to faithful chromosome partitioning, with their inactivation leading to increased frequencies of anucleate cells. Moreover, MksBEF can complement anucleate cell formation in SMC‐deficient cells. Purified PaMksB showed activities typical for condensins including ATP‐modulated DNA binding and condensation. Notably, DNA binding by MksB is negatively regulated by ATP, which sets it apart from other known SMC proteins. Thus, several specialized condensins might be involved in organization of bacterial chromosomes.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21752107</pmid><doi>10.1111/j.1365-2958.2011.07763.x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2011-08, Vol.81 (4), p.881-896 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3179180 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Adenosine Triphosphatases - chemistry Adenosine Triphosphatases - genetics Adenosine Triphosphatases - isolation & purification Adenosine Triphosphatases - metabolism Adenosine Triphosphate - metabolism Bacteria Bacteriology Biological and medical sciences Cells Chromatin Chromosome Segregation Chromosomes Chromosomes, Bacterial - metabolism Cluster Analysis Deoxyribonucleic acid DNA DNA, Bacterial - genetics DNA, Bacterial - metabolism DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - isolation & purification DNA-Binding Proteins - metabolism Fundamental and applied biological sciences. Psychology Microbiology Miscellaneous Models, Biological Multiprotein Complexes - chemistry Multiprotein Complexes - genetics Multiprotein Complexes - isolation & purification Multiprotein Complexes - metabolism Operon Polymorphism, Genetic Protein Binding Protein Structure, Secondary Protein Subunits - genetics Pseudomonas aeruginosa Pseudomonas aeruginosa - genetics Pseudomonas aeruginosa - physiology Sequence Analysis, DNA Sequence Homology, Amino Acid |
title | A new family of bacterial condensins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20family%20of%20bacterial%20condensins&rft.jtitle=Molecular%20microbiology&rft.au=Petrushenko,%20Zoya%20M.&rft.date=2011-08&rft.volume=81&rft.issue=4&rft.spage=881&rft.epage=896&rft.pages=881-896&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2011.07763.x&rft_dat=%3Cproquest_pubme%3E883313377%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5633-c71270e2e9a97f29da2cbdcd4b77e8fdceba3da3517a26d74909ffcb1b2988203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884890134&rft_id=info:pmid/21752107&rfr_iscdi=true |