Loading…

Isolation and Characterization of Adhesive Secretion from Cuvierian Tubules of Sea Cucumber Holothuria forskåli (Echinodermata : Holothuroidea)

The sea cucumber Holothuria forskåli possesses a specialized system called Cuvierian tubules. During mechanical stimulation white filaments (tubules) are expelled and become sticky upon contact with any object. We isolated a protein with adhesive properties from protein extracts of Cuvierian tubules...

Full description

Saved in:
Bibliographic Details
Published in:Evidence-based complementary and alternative medicine 2011-01, Vol.2011 (2011), p.1-13
Main Authors: Baranowska, Malgorzata, Schloßmacher, Ute, McKenzie, J. Douglas, Müller, Werner E. G., Schröder, Heinz C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sea cucumber Holothuria forskåli possesses a specialized system called Cuvierian tubules. During mechanical stimulation white filaments (tubules) are expelled and become sticky upon contact with any object. We isolated a protein with adhesive properties from protein extracts of Cuvierian tubules from H. forskåli. This protein was identified by antibodies against recombinant precollagen D which is located in the byssal threads of the mussel Mytilus galloprovincialis. To find out the optimal procedure for extraction and purification, the identified protein was isolated by several methods, including electroelution, binding to glass beads, immunoprecipitation, and gel filtration. Antibodies raised against the isolated protein were used for localization of the adhesive protein in Cuvierian tubules. Immunostaining and immunogold electron microscopical studies revealed the strongest immunoreactivity in the mesothelium; this tissue layer is involved in adhesion. Adhesion of Cuvierian tubule extracts was measured on the surface of various materials. The extracted protein showed the strongest adhesion to Teflon surface. Increased adhesion was observed in the presence of potassium and EDTA, while cadmium caused a decrease in adhesion. Addition of antibodies and trypsin abolished the adhesive properties of the extract.
ISSN:1741-427X
1741-4288
DOI:10.1155/2011/486845