Loading…

Evolutionary study of a potential selection target region in the pig

Domestication, modern breeding and artificial selection have shaped dramatically the genomic variability of domestic animals. In livestock, the so-called FAT1 quantitative trait locus (QTL) in porcine chromosome 4 was the first QTL uncovered although, to date, its precise molecular nature has remain...

Full description

Saved in:
Bibliographic Details
Published in:Heredity 2011-02, Vol.106 (2), p.330-338
Main Authors: Ojeda, A, Ramos-Onsins, S E, Marletta, D, Huang, L S, Folch, J M, Pérez-Enciso, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Domestication, modern breeding and artificial selection have shaped dramatically the genomic variability of domestic animals. In livestock, the so-called FAT1 quantitative trait locus (QTL) in porcine chromosome 4 was the first QTL uncovered although, to date, its precise molecular nature has remained elusive. Here, we characterize the nucleotide variability of 13 fragments of ∼500 bp equally spaced in a 2 Mb region in the vicinity of the FAT1 region in a wide-diversity panel of 32 pigs. Asian and European animals, including local Mediterranean and international pig breeds, were sequenced. Patterns of genetic variability were very complex and varied largely across loci and populations; they did not reveal overall a clear signal of a selective sweep in any breed, although FABP4 fragment showed a significantly higher diversity. We used an approximate Bayesian computation approach to infer the evolutionary history of this SSC4 region. Notably, we found that European pig populations have a much lower effective size than their Asian counterparts: in the order of hundreds vs hundreds of thousands. We show also an important part of extant European variability is actually due to introgression of Asian germplasm into Europe. This study shows how a potential loss in diversity caused by bottlenecks and possible selective sweeps associated with domestication and artificial selection can be counterbalanced by migration, making it much more difficult the identification of selection footprints based on naive demographic assumptions. Given the small fragment analyzed here, it remains to be studied how these conclusions apply to the rest of the genome.
ISSN:0018-067X
1365-2540
DOI:10.1038/hdy.2010.61