Loading…
Enhanced Mechanical Rigidity of Hydrogels Formed from Enantiomeric Peptide Assemblies
Chirality can be used as a design tool to control the mechanical rigidity of hydrogels formed from self-assembling peptides. Hydrogels prepared from enantiomeric mixtures of self-assembling β-hairpins show nonadditive, synergistic, enhancement in material rigidity compared to gels prepared from eith...
Saved in:
Published in: | Journal of the American Chemical Society 2011-09, Vol.133 (38), p.14975-14977 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chirality can be used as a design tool to control the mechanical rigidity of hydrogels formed from self-assembling peptides. Hydrogels prepared from enantiomeric mixtures of self-assembling β-hairpins show nonadditive, synergistic, enhancement in material rigidity compared to gels prepared from either pure enantiomer, with the racemic hydrogel showing the greatest effect. CD spectroscopy, TEM, and AFM indicate that this enhancement is defined by nanoscale interactions between enantiomers in the self-assembled state. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja206742m |