Loading…
Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay
Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to thi...
Saved in:
Published in: | Cellular and molecular life sciences : CMLS 2011-11, Vol.68 (22), p.3713-3723 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303 |
---|---|
cites | cdi_FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303 |
container_end_page | 3723 |
container_issue | 22 |
container_start_page | 3713 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 68 |
creator | Tarttelin, Emma E. Fransen, Maikel P. Edwards, Patricia C. Hankins, Mark W. Schertler, Gebhard F. X. Vogel, Reiner Lucas, Robert J. Bellingham, James |
description | Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to this sensory task a selective advantage is implied, but the nature of that specialization remains elusive. We have used the presence of distinct rod opsin genes specialized to either image-forming (retinal rod opsin) or non-image-forming (pineal exo-rod opsin) photoreception in ray-finned fish (
Actinopterygii
) to gain a unique insight into this problem. A comparison of biochemical features for these paralogous opsins in two model teleosts,
Fugu
pufferfish (
Takifugu rubripes
) and zebrafish (
Danio rerio
), reveals striking differences. While spectral sensitivity is largely unaltered by specialization to the pineal environment, in other aspects exo-rod opsins exhibit a behavior that is quite distinct from the cardinal features of the rod opsin family. While they display a similar thermal stability, they show a greater than tenfold reduction in the lifetime of the signaling active Meta II photoproduct. We show that these features reflect structural changes in retinal association domains of helices 3 and 5 but, interestingly, not at either of the two residues known to define these characteristics in cone opsins. Our findings suggest that the requirements of non-image-forming photoreception have lead exo-rod opsin to adopt a characteristic that seemingly favors efficient bleach recovery but not at the expense of absolute sensitivity. |
doi_str_mv | 10.1007/s00018-011-0665-y |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3203999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901307706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303</originalsourceid><addsrcrecordid>eNp9kUlvFDEQhVsIRELgB3BBFhe4GMpLL74gRVGAkYK4gMTNcrurl6jHbmx3yPx7PMwQFglOtlxfvXrlVxRPGbxiAPXrCACsocAYhaoq6e5eccokB6qgZveP96rhX06KRzFeZ7hsePWwOOFMsopJdVp8O-_MkkyavCO-J8vk0MwEb5eAMWJHEs7oY8ovngbfEb_EyZHkifOOTlszIOl92E5uIMvokw9ocfmhlsbg12Ek6EbjbJb6gMmQzYZ0aM3ucfGgN3PEJ8fzrPj89vLTxXt69fHd5uL8itqyqhPlkqteclFa0bYCoa244NL0ViKvwVpjWsZV3jMP6I2ErhRc1I0R0EvsBYiz4s1Bd1nbLXYWXQpm1kvI3sNOezPpPytuGvXgb7TgIJRSWeDFUSD4ryvGpLdTtDjPxqFfo1bABNQ1VJl8-V-SAatVWVZNmdHnf6HXfg0uf8ReD7hqYG-dHSAbfIwB-zvXDPQ-f33IX-f89T5_vcs9z35f967jZ-AZ4Acg5pIbMPya_G_V76a0vaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901029800</pqid></control><display><type>article</type><title>Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay</title><source>Springer Nature</source><source>PubMed Central</source><creator>Tarttelin, Emma E. ; Fransen, Maikel P. ; Edwards, Patricia C. ; Hankins, Mark W. ; Schertler, Gebhard F. X. ; Vogel, Reiner ; Lucas, Robert J. ; Bellingham, James</creator><creatorcontrib>Tarttelin, Emma E. ; Fransen, Maikel P. ; Edwards, Patricia C. ; Hankins, Mark W. ; Schertler, Gebhard F. X. ; Vogel, Reiner ; Lucas, Robert J. ; Bellingham, James</creatorcontrib><description>Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to this sensory task a selective advantage is implied, but the nature of that specialization remains elusive. We have used the presence of distinct rod opsin genes specialized to either image-forming (retinal rod opsin) or non-image-forming (pineal exo-rod opsin) photoreception in ray-finned fish (
Actinopterygii
) to gain a unique insight into this problem. A comparison of biochemical features for these paralogous opsins in two model teleosts,
Fugu
pufferfish (
Takifugu rubripes
) and zebrafish (
Danio rerio
), reveals striking differences. While spectral sensitivity is largely unaltered by specialization to the pineal environment, in other aspects exo-rod opsins exhibit a behavior that is quite distinct from the cardinal features of the rod opsin family. While they display a similar thermal stability, they show a greater than tenfold reduction in the lifetime of the signaling active Meta II photoproduct. We show that these features reflect structural changes in retinal association domains of helices 3 and 5 but, interestingly, not at either of the two residues known to define these characteristics in cone opsins. Our findings suggest that the requirements of non-image-forming photoreception have lead exo-rod opsin to adopt a characteristic that seemingly favors efficient bleach recovery but not at the expense of absolute sensitivity.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-011-0665-y</identifier><identifier>PMID: 21416149</identifier><language>eng</language><publisher>Basel: SP Birkhäuser Verlag Basel</publisher><subject>Actinopterygii ; Adaptation ; Adaptation, Physiological ; Animals ; Biochemistry ; Biological Evolution ; Biomedical and Life Sciences ; Biomedicine ; Brackish ; Cell Biology ; Circadian rhythm ; Danio rerio ; Fish ; Fugu ; GTP-Binding Proteins - metabolism ; Life Sciences ; Marine ; Molecular biology ; Opsins - chemistry ; Opsins - genetics ; Opsins - metabolism ; Photic Stimulation ; Photoreception ; Photoreceptor Cells, Vertebrate - cytology ; Photoreceptor Cells, Vertebrate - physiology ; Pigments ; Pineal Gland - chemistry ; Research Article ; Species diversity ; Spectroscopy, Fourier Transform Infrared ; Takifugu - anatomy & histology ; Takifugu - metabolism ; Takifugu rubripes ; Teleostei ; Vision, Ocular - physiology ; Zebrafish - anatomy & histology ; Zebrafish - metabolism</subject><ispartof>Cellular and molecular life sciences : CMLS, 2011-11, Vol.68 (22), p.3713-3723</ispartof><rights>The Author(s) 2011</rights><rights>Springer Basel AG 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303</citedby><cites>FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203999/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203999/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21416149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tarttelin, Emma E.</creatorcontrib><creatorcontrib>Fransen, Maikel P.</creatorcontrib><creatorcontrib>Edwards, Patricia C.</creatorcontrib><creatorcontrib>Hankins, Mark W.</creatorcontrib><creatorcontrib>Schertler, Gebhard F. X.</creatorcontrib><creatorcontrib>Vogel, Reiner</creatorcontrib><creatorcontrib>Lucas, Robert J.</creatorcontrib><creatorcontrib>Bellingham, James</creatorcontrib><title>Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to this sensory task a selective advantage is implied, but the nature of that specialization remains elusive. We have used the presence of distinct rod opsin genes specialized to either image-forming (retinal rod opsin) or non-image-forming (pineal exo-rod opsin) photoreception in ray-finned fish (
Actinopterygii
) to gain a unique insight into this problem. A comparison of biochemical features for these paralogous opsins in two model teleosts,
Fugu
pufferfish (
Takifugu rubripes
) and zebrafish (
Danio rerio
), reveals striking differences. While spectral sensitivity is largely unaltered by specialization to the pineal environment, in other aspects exo-rod opsins exhibit a behavior that is quite distinct from the cardinal features of the rod opsin family. While they display a similar thermal stability, they show a greater than tenfold reduction in the lifetime of the signaling active Meta II photoproduct. We show that these features reflect structural changes in retinal association domains of helices 3 and 5 but, interestingly, not at either of the two residues known to define these characteristics in cone opsins. Our findings suggest that the requirements of non-image-forming photoreception have lead exo-rod opsin to adopt a characteristic that seemingly favors efficient bleach recovery but not at the expense of absolute sensitivity.</description><subject>Actinopterygii</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brackish</subject><subject>Cell Biology</subject><subject>Circadian rhythm</subject><subject>Danio rerio</subject><subject>Fish</subject><subject>Fugu</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Marine</subject><subject>Molecular biology</subject><subject>Opsins - chemistry</subject><subject>Opsins - genetics</subject><subject>Opsins - metabolism</subject><subject>Photic Stimulation</subject><subject>Photoreception</subject><subject>Photoreceptor Cells, Vertebrate - cytology</subject><subject>Photoreceptor Cells, Vertebrate - physiology</subject><subject>Pigments</subject><subject>Pineal Gland - chemistry</subject><subject>Research Article</subject><subject>Species diversity</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Takifugu - anatomy & histology</subject><subject>Takifugu - metabolism</subject><subject>Takifugu rubripes</subject><subject>Teleostei</subject><subject>Vision, Ocular - physiology</subject><subject>Zebrafish - anatomy & histology</subject><subject>Zebrafish - metabolism</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUlvFDEQhVsIRELgB3BBFhe4GMpLL74gRVGAkYK4gMTNcrurl6jHbmx3yPx7PMwQFglOtlxfvXrlVxRPGbxiAPXrCACsocAYhaoq6e5eccokB6qgZveP96rhX06KRzFeZ7hsePWwOOFMsopJdVp8O-_MkkyavCO-J8vk0MwEb5eAMWJHEs7oY8ovngbfEb_EyZHkifOOTlszIOl92E5uIMvokw9ocfmhlsbg12Ek6EbjbJb6gMmQzYZ0aM3ucfGgN3PEJ8fzrPj89vLTxXt69fHd5uL8itqyqhPlkqteclFa0bYCoa244NL0ViKvwVpjWsZV3jMP6I2ErhRc1I0R0EvsBYiz4s1Bd1nbLXYWXQpm1kvI3sNOezPpPytuGvXgb7TgIJRSWeDFUSD4ryvGpLdTtDjPxqFfo1bABNQ1VJl8-V-SAatVWVZNmdHnf6HXfg0uf8ReD7hqYG-dHSAbfIwB-zvXDPQ-f33IX-f89T5_vcs9z35f967jZ-AZ4Acg5pIbMPya_G_V76a0vaQ</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Tarttelin, Emma E.</creator><creator>Fransen, Maikel P.</creator><creator>Edwards, Patricia C.</creator><creator>Hankins, Mark W.</creator><creator>Schertler, Gebhard F. X.</creator><creator>Vogel, Reiner</creator><creator>Lucas, Robert J.</creator><creator>Bellingham, James</creator><general>SP Birkhäuser Verlag Basel</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111101</creationdate><title>Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay</title><author>Tarttelin, Emma E. ; Fransen, Maikel P. ; Edwards, Patricia C. ; Hankins, Mark W. ; Schertler, Gebhard F. X. ; Vogel, Reiner ; Lucas, Robert J. ; Bellingham, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Actinopterygii</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brackish</topic><topic>Cell Biology</topic><topic>Circadian rhythm</topic><topic>Danio rerio</topic><topic>Fish</topic><topic>Fugu</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Marine</topic><topic>Molecular biology</topic><topic>Opsins - chemistry</topic><topic>Opsins - genetics</topic><topic>Opsins - metabolism</topic><topic>Photic Stimulation</topic><topic>Photoreception</topic><topic>Photoreceptor Cells, Vertebrate - cytology</topic><topic>Photoreceptor Cells, Vertebrate - physiology</topic><topic>Pigments</topic><topic>Pineal Gland - chemistry</topic><topic>Research Article</topic><topic>Species diversity</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Takifugu - anatomy & histology</topic><topic>Takifugu - metabolism</topic><topic>Takifugu rubripes</topic><topic>Teleostei</topic><topic>Vision, Ocular - physiology</topic><topic>Zebrafish - anatomy & histology</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarttelin, Emma E.</creatorcontrib><creatorcontrib>Fransen, Maikel P.</creatorcontrib><creatorcontrib>Edwards, Patricia C.</creatorcontrib><creatorcontrib>Hankins, Mark W.</creatorcontrib><creatorcontrib>Schertler, Gebhard F. X.</creatorcontrib><creatorcontrib>Vogel, Reiner</creatorcontrib><creatorcontrib>Lucas, Robert J.</creatorcontrib><creatorcontrib>Bellingham, James</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarttelin, Emma E.</au><au>Fransen, Maikel P.</au><au>Edwards, Patricia C.</au><au>Hankins, Mark W.</au><au>Schertler, Gebhard F. X.</au><au>Vogel, Reiner</au><au>Lucas, Robert J.</au><au>Bellingham, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>68</volume><issue>22</issue><spage>3713</spage><epage>3723</epage><pages>3713-3723</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to this sensory task a selective advantage is implied, but the nature of that specialization remains elusive. We have used the presence of distinct rod opsin genes specialized to either image-forming (retinal rod opsin) or non-image-forming (pineal exo-rod opsin) photoreception in ray-finned fish (
Actinopterygii
) to gain a unique insight into this problem. A comparison of biochemical features for these paralogous opsins in two model teleosts,
Fugu
pufferfish (
Takifugu rubripes
) and zebrafish (
Danio rerio
), reveals striking differences. While spectral sensitivity is largely unaltered by specialization to the pineal environment, in other aspects exo-rod opsins exhibit a behavior that is quite distinct from the cardinal features of the rod opsin family. While they display a similar thermal stability, they show a greater than tenfold reduction in the lifetime of the signaling active Meta II photoproduct. We show that these features reflect structural changes in retinal association domains of helices 3 and 5 but, interestingly, not at either of the two residues known to define these characteristics in cone opsins. Our findings suggest that the requirements of non-image-forming photoreception have lead exo-rod opsin to adopt a characteristic that seemingly favors efficient bleach recovery but not at the expense of absolute sensitivity.</abstract><cop>Basel</cop><pub>SP Birkhäuser Verlag Basel</pub><pmid>21416149</pmid><doi>10.1007/s00018-011-0665-y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2011-11, Vol.68 (22), p.3713-3723 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3203999 |
source | Springer Nature; PubMed Central |
subjects | Actinopterygii Adaptation Adaptation, Physiological Animals Biochemistry Biological Evolution Biomedical and Life Sciences Biomedicine Brackish Cell Biology Circadian rhythm Danio rerio Fish Fugu GTP-Binding Proteins - metabolism Life Sciences Marine Molecular biology Opsins - chemistry Opsins - genetics Opsins - metabolism Photic Stimulation Photoreception Photoreceptor Cells, Vertebrate - cytology Photoreceptor Cells, Vertebrate - physiology Pigments Pineal Gland - chemistry Research Article Species diversity Spectroscopy, Fourier Transform Infrared Takifugu - anatomy & histology Takifugu - metabolism Takifugu rubripes Teleostei Vision, Ocular - physiology Zebrafish - anatomy & histology Zebrafish - metabolism |
title | Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20of%20pineal%20expressed%20teleost%20exo-rod%20opsin%20to%20non-image%20forming%20photoreception%20through%20enhanced%20Meta%20II%20decay&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Tarttelin,%20Emma%20E.&rft.date=2011-11-01&rft.volume=68&rft.issue=22&rft.spage=3713&rft.epage=3723&rft.pages=3713-3723&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-011-0665-y&rft_dat=%3Cproquest_pubme%3E901307706%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901029800&rft_id=info:pmid/21416149&rfr_iscdi=true |