Loading…

Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay

Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to thi...

Full description

Saved in:
Bibliographic Details
Published in:Cellular and molecular life sciences : CMLS 2011-11, Vol.68 (22), p.3713-3723
Main Authors: Tarttelin, Emma E., Fransen, Maikel P., Edwards, Patricia C., Hankins, Mark W., Schertler, Gebhard F. X., Vogel, Reiner, Lucas, Robert J., Bellingham, James
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303
cites cdi_FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303
container_end_page 3723
container_issue 22
container_start_page 3713
container_title Cellular and molecular life sciences : CMLS
container_volume 68
creator Tarttelin, Emma E.
Fransen, Maikel P.
Edwards, Patricia C.
Hankins, Mark W.
Schertler, Gebhard F. X.
Vogel, Reiner
Lucas, Robert J.
Bellingham, James
description Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to this sensory task a selective advantage is implied, but the nature of that specialization remains elusive. We have used the presence of distinct rod opsin genes specialized to either image-forming (retinal rod opsin) or non-image-forming (pineal exo-rod opsin) photoreception in ray-finned fish ( Actinopterygii ) to gain a unique insight into this problem. A comparison of biochemical features for these paralogous opsins in two model teleosts, Fugu pufferfish ( Takifugu rubripes ) and zebrafish ( Danio rerio ), reveals striking differences. While spectral sensitivity is largely unaltered by specialization to the pineal environment, in other aspects exo-rod opsins exhibit a behavior that is quite distinct from the cardinal features of the rod opsin family. While they display a similar thermal stability, they show a greater than tenfold reduction in the lifetime of the signaling active Meta II photoproduct. We show that these features reflect structural changes in retinal association domains of helices 3 and 5 but, interestingly, not at either of the two residues known to define these characteristics in cone opsins. Our findings suggest that the requirements of non-image-forming photoreception have lead exo-rod opsin to adopt a characteristic that seemingly favors efficient bleach recovery but not at the expense of absolute sensitivity.
doi_str_mv 10.1007/s00018-011-0665-y
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3203999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901307706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303</originalsourceid><addsrcrecordid>eNp9kUlvFDEQhVsIRELgB3BBFhe4GMpLL74gRVGAkYK4gMTNcrurl6jHbmx3yPx7PMwQFglOtlxfvXrlVxRPGbxiAPXrCACsocAYhaoq6e5eccokB6qgZveP96rhX06KRzFeZ7hsePWwOOFMsopJdVp8O-_MkkyavCO-J8vk0MwEb5eAMWJHEs7oY8ovngbfEb_EyZHkifOOTlszIOl92E5uIMvokw9ocfmhlsbg12Ek6EbjbJb6gMmQzYZ0aM3ucfGgN3PEJ8fzrPj89vLTxXt69fHd5uL8itqyqhPlkqteclFa0bYCoa244NL0ViKvwVpjWsZV3jMP6I2ErhRc1I0R0EvsBYiz4s1Bd1nbLXYWXQpm1kvI3sNOezPpPytuGvXgb7TgIJRSWeDFUSD4ryvGpLdTtDjPxqFfo1bABNQ1VJl8-V-SAatVWVZNmdHnf6HXfg0uf8ReD7hqYG-dHSAbfIwB-zvXDPQ-f33IX-f89T5_vcs9z35f967jZ-AZ4Acg5pIbMPya_G_V76a0vaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901029800</pqid></control><display><type>article</type><title>Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay</title><source>Springer Nature</source><source>PubMed Central</source><creator>Tarttelin, Emma E. ; Fransen, Maikel P. ; Edwards, Patricia C. ; Hankins, Mark W. ; Schertler, Gebhard F. X. ; Vogel, Reiner ; Lucas, Robert J. ; Bellingham, James</creator><creatorcontrib>Tarttelin, Emma E. ; Fransen, Maikel P. ; Edwards, Patricia C. ; Hankins, Mark W. ; Schertler, Gebhard F. X. ; Vogel, Reiner ; Lucas, Robert J. ; Bellingham, James</creatorcontrib><description>Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to this sensory task a selective advantage is implied, but the nature of that specialization remains elusive. We have used the presence of distinct rod opsin genes specialized to either image-forming (retinal rod opsin) or non-image-forming (pineal exo-rod opsin) photoreception in ray-finned fish ( Actinopterygii ) to gain a unique insight into this problem. A comparison of biochemical features for these paralogous opsins in two model teleosts, Fugu pufferfish ( Takifugu rubripes ) and zebrafish ( Danio rerio ), reveals striking differences. While spectral sensitivity is largely unaltered by specialization to the pineal environment, in other aspects exo-rod opsins exhibit a behavior that is quite distinct from the cardinal features of the rod opsin family. While they display a similar thermal stability, they show a greater than tenfold reduction in the lifetime of the signaling active Meta II photoproduct. We show that these features reflect structural changes in retinal association domains of helices 3 and 5 but, interestingly, not at either of the two residues known to define these characteristics in cone opsins. Our findings suggest that the requirements of non-image-forming photoreception have lead exo-rod opsin to adopt a characteristic that seemingly favors efficient bleach recovery but not at the expense of absolute sensitivity.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-011-0665-y</identifier><identifier>PMID: 21416149</identifier><language>eng</language><publisher>Basel: SP Birkhäuser Verlag Basel</publisher><subject>Actinopterygii ; Adaptation ; Adaptation, Physiological ; Animals ; Biochemistry ; Biological Evolution ; Biomedical and Life Sciences ; Biomedicine ; Brackish ; Cell Biology ; Circadian rhythm ; Danio rerio ; Fish ; Fugu ; GTP-Binding Proteins - metabolism ; Life Sciences ; Marine ; Molecular biology ; Opsins - chemistry ; Opsins - genetics ; Opsins - metabolism ; Photic Stimulation ; Photoreception ; Photoreceptor Cells, Vertebrate - cytology ; Photoreceptor Cells, Vertebrate - physiology ; Pigments ; Pineal Gland - chemistry ; Research Article ; Species diversity ; Spectroscopy, Fourier Transform Infrared ; Takifugu - anatomy &amp; histology ; Takifugu - metabolism ; Takifugu rubripes ; Teleostei ; Vision, Ocular - physiology ; Zebrafish - anatomy &amp; histology ; Zebrafish - metabolism</subject><ispartof>Cellular and molecular life sciences : CMLS, 2011-11, Vol.68 (22), p.3713-3723</ispartof><rights>The Author(s) 2011</rights><rights>Springer Basel AG 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303</citedby><cites>FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203999/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203999/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21416149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tarttelin, Emma E.</creatorcontrib><creatorcontrib>Fransen, Maikel P.</creatorcontrib><creatorcontrib>Edwards, Patricia C.</creatorcontrib><creatorcontrib>Hankins, Mark W.</creatorcontrib><creatorcontrib>Schertler, Gebhard F. X.</creatorcontrib><creatorcontrib>Vogel, Reiner</creatorcontrib><creatorcontrib>Lucas, Robert J.</creatorcontrib><creatorcontrib>Bellingham, James</creatorcontrib><title>Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to this sensory task a selective advantage is implied, but the nature of that specialization remains elusive. We have used the presence of distinct rod opsin genes specialized to either image-forming (retinal rod opsin) or non-image-forming (pineal exo-rod opsin) photoreception in ray-finned fish ( Actinopterygii ) to gain a unique insight into this problem. A comparison of biochemical features for these paralogous opsins in two model teleosts, Fugu pufferfish ( Takifugu rubripes ) and zebrafish ( Danio rerio ), reveals striking differences. While spectral sensitivity is largely unaltered by specialization to the pineal environment, in other aspects exo-rod opsins exhibit a behavior that is quite distinct from the cardinal features of the rod opsin family. While they display a similar thermal stability, they show a greater than tenfold reduction in the lifetime of the signaling active Meta II photoproduct. We show that these features reflect structural changes in retinal association domains of helices 3 and 5 but, interestingly, not at either of the two residues known to define these characteristics in cone opsins. Our findings suggest that the requirements of non-image-forming photoreception have lead exo-rod opsin to adopt a characteristic that seemingly favors efficient bleach recovery but not at the expense of absolute sensitivity.</description><subject>Actinopterygii</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brackish</subject><subject>Cell Biology</subject><subject>Circadian rhythm</subject><subject>Danio rerio</subject><subject>Fish</subject><subject>Fugu</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Marine</subject><subject>Molecular biology</subject><subject>Opsins - chemistry</subject><subject>Opsins - genetics</subject><subject>Opsins - metabolism</subject><subject>Photic Stimulation</subject><subject>Photoreception</subject><subject>Photoreceptor Cells, Vertebrate - cytology</subject><subject>Photoreceptor Cells, Vertebrate - physiology</subject><subject>Pigments</subject><subject>Pineal Gland - chemistry</subject><subject>Research Article</subject><subject>Species diversity</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Takifugu - anatomy &amp; histology</subject><subject>Takifugu - metabolism</subject><subject>Takifugu rubripes</subject><subject>Teleostei</subject><subject>Vision, Ocular - physiology</subject><subject>Zebrafish - anatomy &amp; histology</subject><subject>Zebrafish - metabolism</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUlvFDEQhVsIRELgB3BBFhe4GMpLL74gRVGAkYK4gMTNcrurl6jHbmx3yPx7PMwQFglOtlxfvXrlVxRPGbxiAPXrCACsocAYhaoq6e5eccokB6qgZveP96rhX06KRzFeZ7hsePWwOOFMsopJdVp8O-_MkkyavCO-J8vk0MwEb5eAMWJHEs7oY8ovngbfEb_EyZHkifOOTlszIOl92E5uIMvokw9ocfmhlsbg12Ek6EbjbJb6gMmQzYZ0aM3ucfGgN3PEJ8fzrPj89vLTxXt69fHd5uL8itqyqhPlkqteclFa0bYCoa244NL0ViKvwVpjWsZV3jMP6I2ErhRc1I0R0EvsBYiz4s1Bd1nbLXYWXQpm1kvI3sNOezPpPytuGvXgb7TgIJRSWeDFUSD4ryvGpLdTtDjPxqFfo1bABNQ1VJl8-V-SAatVWVZNmdHnf6HXfg0uf8ReD7hqYG-dHSAbfIwB-zvXDPQ-f33IX-f89T5_vcs9z35f967jZ-AZ4Acg5pIbMPya_G_V76a0vaQ</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Tarttelin, Emma E.</creator><creator>Fransen, Maikel P.</creator><creator>Edwards, Patricia C.</creator><creator>Hankins, Mark W.</creator><creator>Schertler, Gebhard F. X.</creator><creator>Vogel, Reiner</creator><creator>Lucas, Robert J.</creator><creator>Bellingham, James</creator><general>SP Birkhäuser Verlag Basel</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111101</creationdate><title>Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay</title><author>Tarttelin, Emma E. ; Fransen, Maikel P. ; Edwards, Patricia C. ; Hankins, Mark W. ; Schertler, Gebhard F. X. ; Vogel, Reiner ; Lucas, Robert J. ; Bellingham, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Actinopterygii</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brackish</topic><topic>Cell Biology</topic><topic>Circadian rhythm</topic><topic>Danio rerio</topic><topic>Fish</topic><topic>Fugu</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Marine</topic><topic>Molecular biology</topic><topic>Opsins - chemistry</topic><topic>Opsins - genetics</topic><topic>Opsins - metabolism</topic><topic>Photic Stimulation</topic><topic>Photoreception</topic><topic>Photoreceptor Cells, Vertebrate - cytology</topic><topic>Photoreceptor Cells, Vertebrate - physiology</topic><topic>Pigments</topic><topic>Pineal Gland - chemistry</topic><topic>Research Article</topic><topic>Species diversity</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Takifugu - anatomy &amp; histology</topic><topic>Takifugu - metabolism</topic><topic>Takifugu rubripes</topic><topic>Teleostei</topic><topic>Vision, Ocular - physiology</topic><topic>Zebrafish - anatomy &amp; histology</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarttelin, Emma E.</creatorcontrib><creatorcontrib>Fransen, Maikel P.</creatorcontrib><creatorcontrib>Edwards, Patricia C.</creatorcontrib><creatorcontrib>Hankins, Mark W.</creatorcontrib><creatorcontrib>Schertler, Gebhard F. X.</creatorcontrib><creatorcontrib>Vogel, Reiner</creatorcontrib><creatorcontrib>Lucas, Robert J.</creatorcontrib><creatorcontrib>Bellingham, James</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarttelin, Emma E.</au><au>Fransen, Maikel P.</au><au>Edwards, Patricia C.</au><au>Hankins, Mark W.</au><au>Schertler, Gebhard F. X.</au><au>Vogel, Reiner</au><au>Lucas, Robert J.</au><au>Bellingham, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>68</volume><issue>22</issue><spage>3713</spage><epage>3723</epage><pages>3713-3723</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to this sensory task a selective advantage is implied, but the nature of that specialization remains elusive. We have used the presence of distinct rod opsin genes specialized to either image-forming (retinal rod opsin) or non-image-forming (pineal exo-rod opsin) photoreception in ray-finned fish ( Actinopterygii ) to gain a unique insight into this problem. A comparison of biochemical features for these paralogous opsins in two model teleosts, Fugu pufferfish ( Takifugu rubripes ) and zebrafish ( Danio rerio ), reveals striking differences. While spectral sensitivity is largely unaltered by specialization to the pineal environment, in other aspects exo-rod opsins exhibit a behavior that is quite distinct from the cardinal features of the rod opsin family. While they display a similar thermal stability, they show a greater than tenfold reduction in the lifetime of the signaling active Meta II photoproduct. We show that these features reflect structural changes in retinal association domains of helices 3 and 5 but, interestingly, not at either of the two residues known to define these characteristics in cone opsins. Our findings suggest that the requirements of non-image-forming photoreception have lead exo-rod opsin to adopt a characteristic that seemingly favors efficient bleach recovery but not at the expense of absolute sensitivity.</abstract><cop>Basel</cop><pub>SP Birkhäuser Verlag Basel</pub><pmid>21416149</pmid><doi>10.1007/s00018-011-0665-y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2011-11, Vol.68 (22), p.3713-3723
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3203999
source Springer Nature; PubMed Central
subjects Actinopterygii
Adaptation
Adaptation, Physiological
Animals
Biochemistry
Biological Evolution
Biomedical and Life Sciences
Biomedicine
Brackish
Cell Biology
Circadian rhythm
Danio rerio
Fish
Fugu
GTP-Binding Proteins - metabolism
Life Sciences
Marine
Molecular biology
Opsins - chemistry
Opsins - genetics
Opsins - metabolism
Photic Stimulation
Photoreception
Photoreceptor Cells, Vertebrate - cytology
Photoreceptor Cells, Vertebrate - physiology
Pigments
Pineal Gland - chemistry
Research Article
Species diversity
Spectroscopy, Fourier Transform Infrared
Takifugu - anatomy & histology
Takifugu - metabolism
Takifugu rubripes
Teleostei
Vision, Ocular - physiology
Zebrafish - anatomy & histology
Zebrafish - metabolism
title Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20of%20pineal%20expressed%20teleost%20exo-rod%20opsin%20to%20non-image%20forming%20photoreception%20through%20enhanced%20Meta%20II%20decay&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Tarttelin,%20Emma%20E.&rft.date=2011-11-01&rft.volume=68&rft.issue=22&rft.spage=3713&rft.epage=3723&rft.pages=3713-3723&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-011-0665-y&rft_dat=%3Cproquest_pubme%3E901307706%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-2429f4235c3bb3e0b62324afc4e270ccaab129142cedfa40d532378a30f4ef303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901029800&rft_id=info:pmid/21416149&rfr_iscdi=true