Loading…

Crystal Structure of the Plant Epigenetic Protein Arginine Methyltransferase 10

Protein arginine methyltransferase 10 (PRMT10) is a type I arginine methyltransferase that is essential for regulating flowering time in Arabidopsis thaliana. We present a 2.6 Å resolution crystal structure of A. thaliana PRMT 10 (AtPRMT10) in complex with a reaction product, S-adenosylhomocysteine....

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2011-11, Vol.414 (1), p.106-122
Main Authors: Cheng, Yuan, Frazier, Monica, Lu, Falong, Cao, Xiaofeng, Redinbo, Matthew R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c573t-69e2e6e19b5e4ac5831a40340041190ad7bcfb3eaff785e4fe42f88e4014327b3
cites cdi_FETCH-LOGICAL-c573t-69e2e6e19b5e4ac5831a40340041190ad7bcfb3eaff785e4fe42f88e4014327b3
container_end_page 122
container_issue 1
container_start_page 106
container_title Journal of molecular biology
container_volume 414
creator Cheng, Yuan
Frazier, Monica
Lu, Falong
Cao, Xiaofeng
Redinbo, Matthew R.
description Protein arginine methyltransferase 10 (PRMT10) is a type I arginine methyltransferase that is essential for regulating flowering time in Arabidopsis thaliana. We present a 2.6 Å resolution crystal structure of A. thaliana PRMT 10 (AtPRMT10) in complex with a reaction product, S-adenosylhomocysteine. The structure reveals a dimerization arm that is 12–20 residues longer than PRMT structures elucidated previously; as a result, the essential AtPRMT10 dimer exhibits a large central cavity and a distinctly accessible active site. We employ molecular dynamics to examine how dimerization facilitates AtPRMT10 motions necessary for activity, and we show that these motions are conserved in other PRMT enzymes. Finally, functional data reveal that the 10 N-terminal residues of AtPRMT10 influence substrate specificity, and that enzyme activity is dependent on substrate protein sequences distal from the methylation site. Taken together, these data provide insights into the molecular mechanism of AtPRMT10, as well as other members of the PRMT family of enzymes. They highlight differences between AtPRMT10 and other PRMTs but also indicate that motions are a conserved element of PRMT function. [Display omitted] ► AtPRMT10 is required for epigenetic control of flowering time. ► The AtPRMT10 crystal structure is the first crystal structure of a plant PRMT. ► The structure exhibits a uniquely open conformation relative to other PRMTs. ► Functional data establish distinct features of AtPRMT10. ► Molecular dynamics data identify conserved motions in the PRMT family.
doi_str_mv 10.1016/j.jmb.2011.09.040
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3217299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283611010801</els_id><sourcerecordid>1672089475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-69e2e6e19b5e4ac5831a40340041190ad7bcfb3eaff785e4fe42f88e4014327b3</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhi0EoqHwA7jA3uCyYfyxXltIlaqofEhFrVR6trzOOHG02Q22t1L-PQ4pFVwKJx_mmfH7zryEvKYwp0Dlh818s-3mDCidg56DgCdkRkHpWkmunpIZAGM1U1yekBcpbQCg4UI9JyeMaiVL34xcLeI-ZdtXNzlOLk8Rq9FXeY3VdW-HXF3swgoHzMFV13HMGIbqPK7CEAasvmFe7_sc7ZA8RpuwovCSPPO2T_jq_j0lt58uvi--1JdXn78uzi9r17Q811IjQ4lUdw0K6xrFqRXABYCgVINdtp3zHUfrfasK4lEwrxQKoIKztuOn5Ow4dzd1W1w6HIqO3uxi2Nq4N6MN5u_KENZmNd4ZzmjLtC4D3t0PiOOPCVM225Ac9sU1jlMyuqwTtJC0kO8fJalsWVm6aJt_o0Iq3qpi4f9Q2ehfKD2iLo4pRfQPNimYQxDMxpQgmEMQDGhTlJeeN3_u56Hj9-UL8PYIeDsau4ohmdubUmhKSkSJyeHbj0cCyx3vAkaTXMDB4TJEdNksx_CIgJ9pT8wM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468365932</pqid></control><display><type>article</type><title>Crystal Structure of the Plant Epigenetic Protein Arginine Methyltransferase 10</title><source>Elsevier</source><creator>Cheng, Yuan ; Frazier, Monica ; Lu, Falong ; Cao, Xiaofeng ; Redinbo, Matthew R.</creator><creatorcontrib>Cheng, Yuan ; Frazier, Monica ; Lu, Falong ; Cao, Xiaofeng ; Redinbo, Matthew R.</creatorcontrib><description>Protein arginine methyltransferase 10 (PRMT10) is a type I arginine methyltransferase that is essential for regulating flowering time in Arabidopsis thaliana. We present a 2.6 Å resolution crystal structure of A. thaliana PRMT 10 (AtPRMT10) in complex with a reaction product, S-adenosylhomocysteine. The structure reveals a dimerization arm that is 12–20 residues longer than PRMT structures elucidated previously; as a result, the essential AtPRMT10 dimer exhibits a large central cavity and a distinctly accessible active site. We employ molecular dynamics to examine how dimerization facilitates AtPRMT10 motions necessary for activity, and we show that these motions are conserved in other PRMT enzymes. Finally, functional data reveal that the 10 N-terminal residues of AtPRMT10 influence substrate specificity, and that enzyme activity is dependent on substrate protein sequences distal from the methylation site. Taken together, these data provide insights into the molecular mechanism of AtPRMT10, as well as other members of the PRMT family of enzymes. They highlight differences between AtPRMT10 and other PRMTs but also indicate that motions are a conserved element of PRMT function. [Display omitted] ► AtPRMT10 is required for epigenetic control of flowering time. ► The AtPRMT10 crystal structure is the first crystal structure of a plant PRMT. ► The structure exhibits a uniquely open conformation relative to other PRMTs. ► Functional data establish distinct features of AtPRMT10. ► Molecular dynamics data identify conserved motions in the PRMT family.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2011.09.040</identifier><identifier>PMID: 21986201</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; amino acid sequences ; Arabidopsis ; Arabidopsis - metabolism ; Arabidopsis Proteins ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Catalytic Domain ; chemistry ; Crystal structure ; Crystallography, X-Ray ; dimerization ; enzyme activity ; epigenetics ; flowering time ; metabolism ; Methylation ; methyltransferases ; Methyltransferases - chemistry ; Methyltransferases - metabolism ; Models, Molecular ; molecular dynamics ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Protein Conformation ; protein motion ; Protein Multimerization ; protein structure ; Protein Structure, Secondary ; S-Adenosylhomocysteine ; S-Adenosylhomocysteine - chemistry ; S-Adenosylhomocysteine - metabolism ; Sequence Homology, Amino Acid ; Substrate Specificity</subject><ispartof>Journal of molecular biology, 2011-11, Vol.414 (1), p.106-122</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><rights>2011 Elsevier Ltd. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-69e2e6e19b5e4ac5831a40340041190ad7bcfb3eaff785e4fe42f88e4014327b3</citedby><cites>FETCH-LOGICAL-c573t-69e2e6e19b5e4ac5831a40340041190ad7bcfb3eaff785e4fe42f88e4014327b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21986201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Yuan</creatorcontrib><creatorcontrib>Frazier, Monica</creatorcontrib><creatorcontrib>Lu, Falong</creatorcontrib><creatorcontrib>Cao, Xiaofeng</creatorcontrib><creatorcontrib>Redinbo, Matthew R.</creatorcontrib><title>Crystal Structure of the Plant Epigenetic Protein Arginine Methyltransferase 10</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Protein arginine methyltransferase 10 (PRMT10) is a type I arginine methyltransferase that is essential for regulating flowering time in Arabidopsis thaliana. We present a 2.6 Å resolution crystal structure of A. thaliana PRMT 10 (AtPRMT10) in complex with a reaction product, S-adenosylhomocysteine. The structure reveals a dimerization arm that is 12–20 residues longer than PRMT structures elucidated previously; as a result, the essential AtPRMT10 dimer exhibits a large central cavity and a distinctly accessible active site. We employ molecular dynamics to examine how dimerization facilitates AtPRMT10 motions necessary for activity, and we show that these motions are conserved in other PRMT enzymes. Finally, functional data reveal that the 10 N-terminal residues of AtPRMT10 influence substrate specificity, and that enzyme activity is dependent on substrate protein sequences distal from the methylation site. Taken together, these data provide insights into the molecular mechanism of AtPRMT10, as well as other members of the PRMT family of enzymes. They highlight differences between AtPRMT10 and other PRMTs but also indicate that motions are a conserved element of PRMT function. [Display omitted] ► AtPRMT10 is required for epigenetic control of flowering time. ► The AtPRMT10 crystal structure is the first crystal structure of a plant PRMT. ► The structure exhibits a uniquely open conformation relative to other PRMTs. ► Functional data establish distinct features of AtPRMT10. ► Molecular dynamics data identify conserved motions in the PRMT family.</description><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>Arabidopsis</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Catalytic Domain</subject><subject>chemistry</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>dimerization</subject><subject>enzyme activity</subject><subject>epigenetics</subject><subject>flowering time</subject><subject>metabolism</subject><subject>Methylation</subject><subject>methyltransferases</subject><subject>Methyltransferases - chemistry</subject><subject>Methyltransferases - metabolism</subject><subject>Models, Molecular</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>protein motion</subject><subject>Protein Multimerization</subject><subject>protein structure</subject><subject>Protein Structure, Secondary</subject><subject>S-Adenosylhomocysteine</subject><subject>S-Adenosylhomocysteine - chemistry</subject><subject>S-Adenosylhomocysteine - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkk1vEzEQhi0EoqHwA7jA3uCyYfyxXltIlaqofEhFrVR6trzOOHG02Q22t1L-PQ4pFVwKJx_mmfH7zryEvKYwp0Dlh818s-3mDCidg56DgCdkRkHpWkmunpIZAGM1U1yekBcpbQCg4UI9JyeMaiVL34xcLeI-ZdtXNzlOLk8Rq9FXeY3VdW-HXF3swgoHzMFV13HMGIbqPK7CEAasvmFe7_sc7ZA8RpuwovCSPPO2T_jq_j0lt58uvi--1JdXn78uzi9r17Q811IjQ4lUdw0K6xrFqRXABYCgVINdtp3zHUfrfasK4lEwrxQKoIKztuOn5Ow4dzd1W1w6HIqO3uxi2Nq4N6MN5u_KENZmNd4ZzmjLtC4D3t0PiOOPCVM225Ac9sU1jlMyuqwTtJC0kO8fJalsWVm6aJt_o0Iq3qpi4f9Q2ehfKD2iLo4pRfQPNimYQxDMxpQgmEMQDGhTlJeeN3_u56Hj9-UL8PYIeDsau4ohmdubUmhKSkSJyeHbj0cCyx3vAkaTXMDB4TJEdNksx_CIgJ9pT8wM</recordid><startdate>20111118</startdate><enddate>20111118</enddate><creator>Cheng, Yuan</creator><creator>Frazier, Monica</creator><creator>Lu, Falong</creator><creator>Cao, Xiaofeng</creator><creator>Redinbo, Matthew R.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111118</creationdate><title>Crystal Structure of the Plant Epigenetic Protein Arginine Methyltransferase 10</title><author>Cheng, Yuan ; Frazier, Monica ; Lu, Falong ; Cao, Xiaofeng ; Redinbo, Matthew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-69e2e6e19b5e4ac5831a40340041190ad7bcfb3eaff785e4fe42f88e4014327b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>Arabidopsis</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Catalytic Domain</topic><topic>chemistry</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>dimerization</topic><topic>enzyme activity</topic><topic>epigenetics</topic><topic>flowering time</topic><topic>metabolism</topic><topic>Methylation</topic><topic>methyltransferases</topic><topic>Methyltransferases - chemistry</topic><topic>Methyltransferases - metabolism</topic><topic>Models, Molecular</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>protein motion</topic><topic>Protein Multimerization</topic><topic>protein structure</topic><topic>Protein Structure, Secondary</topic><topic>S-Adenosylhomocysteine</topic><topic>S-Adenosylhomocysteine - chemistry</topic><topic>S-Adenosylhomocysteine - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yuan</creatorcontrib><creatorcontrib>Frazier, Monica</creatorcontrib><creatorcontrib>Lu, Falong</creatorcontrib><creatorcontrib>Cao, Xiaofeng</creatorcontrib><creatorcontrib>Redinbo, Matthew R.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yuan</au><au>Frazier, Monica</au><au>Lu, Falong</au><au>Cao, Xiaofeng</au><au>Redinbo, Matthew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structure of the Plant Epigenetic Protein Arginine Methyltransferase 10</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2011-11-18</date><risdate>2011</risdate><volume>414</volume><issue>1</issue><spage>106</spage><epage>122</epage><pages>106-122</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Protein arginine methyltransferase 10 (PRMT10) is a type I arginine methyltransferase that is essential for regulating flowering time in Arabidopsis thaliana. We present a 2.6 Å resolution crystal structure of A. thaliana PRMT 10 (AtPRMT10) in complex with a reaction product, S-adenosylhomocysteine. The structure reveals a dimerization arm that is 12–20 residues longer than PRMT structures elucidated previously; as a result, the essential AtPRMT10 dimer exhibits a large central cavity and a distinctly accessible active site. We employ molecular dynamics to examine how dimerization facilitates AtPRMT10 motions necessary for activity, and we show that these motions are conserved in other PRMT enzymes. Finally, functional data reveal that the 10 N-terminal residues of AtPRMT10 influence substrate specificity, and that enzyme activity is dependent on substrate protein sequences distal from the methylation site. Taken together, these data provide insights into the molecular mechanism of AtPRMT10, as well as other members of the PRMT family of enzymes. They highlight differences between AtPRMT10 and other PRMTs but also indicate that motions are a conserved element of PRMT function. [Display omitted] ► AtPRMT10 is required for epigenetic control of flowering time. ► The AtPRMT10 crystal structure is the first crystal structure of a plant PRMT. ► The structure exhibits a uniquely open conformation relative to other PRMTs. ► Functional data establish distinct features of AtPRMT10. ► Molecular dynamics data identify conserved motions in the PRMT family.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21986201</pmid><doi>10.1016/j.jmb.2011.09.040</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2011-11, Vol.414 (1), p.106-122
issn 0022-2836
1089-8638
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3217299
source Elsevier
subjects Amino Acid Sequence
amino acid sequences
Arabidopsis
Arabidopsis - metabolism
Arabidopsis Proteins
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Catalytic Domain
chemistry
Crystal structure
Crystallography, X-Ray
dimerization
enzyme activity
epigenetics
flowering time
metabolism
Methylation
methyltransferases
Methyltransferases - chemistry
Methyltransferases - metabolism
Models, Molecular
molecular dynamics
Molecular Dynamics Simulation
Molecular Sequence Data
Protein Conformation
protein motion
Protein Multimerization
protein structure
Protein Structure, Secondary
S-Adenosylhomocysteine
S-Adenosylhomocysteine - chemistry
S-Adenosylhomocysteine - metabolism
Sequence Homology, Amino Acid
Substrate Specificity
title Crystal Structure of the Plant Epigenetic Protein Arginine Methyltransferase 10
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structure%20of%20the%20Plant%20Epigenetic%20Protein%20Arginine%20Methyltransferase%2010&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Cheng,%20Yuan&rft.date=2011-11-18&rft.volume=414&rft.issue=1&rft.spage=106&rft.epage=122&rft.pages=106-122&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2011.09.040&rft_dat=%3Cproquest_pubme%3E1672089475%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-69e2e6e19b5e4ac5831a40340041190ad7bcfb3eaff785e4fe42f88e4014327b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1468365932&rft_id=info:pmid/21986201&rfr_iscdi=true