Loading…

Characterization of Tunable FGF-2 Releasing Polyelectrolyte Multilayers

Fibroblast growth factor 2 (FGF-2) is a potent mediator of stem cell differentiation and proliferation. Although FGF-2 has a well-established role in promoting bone tissue formation, flaws in its delivery have limited its clinical utility. Polyelectrolyte multilayer films represent a novel system fo...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2010-08, Vol.11 (8), p.2053-2059
Main Authors: Macdonald, Mara L, Rodriguez, Natalia M, Shah, Nisarg J, Hammond, Paula T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fibroblast growth factor 2 (FGF-2) is a potent mediator of stem cell differentiation and proliferation. Although FGF-2 has a well-established role in promoting bone tissue formation, flaws in its delivery have limited its clinical utility. Polyelectrolyte multilayer films represent a novel system for FGF-2 delivery that has promise for local, precisely controlled, and sustained release of FGF-2 from surfaces of interest, including medical implants and tissue engineering scaffolds. In this work, the loading and release of FGF-2 from synthetic hydrolytically degradable multilayer thin films of various architectures is explored; drug loading was tunable using at least three parameters (number of nanolayers, counterpolyanion, and type of degradable polycation) and yielded values of 7−45 ng/cm2 of FGF-2. Release time varied between 24 h and approximately five days. FGF-2 released from these films retained in vitro activity, promoting the proliferation of MC3T3 preosteoblast cells. The use of biologically derived counterpolyanions heparin sulfate and chondroitin sulfate in the multilayer structures enhanced FGF-2 activity. The control over drug loading and release kinetics inform future in vivo bone and tissue regeneration models for the exploration of clinical relevance of LbL growth factor delivery films.
ISSN:1525-7797
1526-4602
DOI:10.1021/bm100413w