Loading…

Fate of exogenous recombinant plasmids introduced into mouse and human cells

We have constructed a number of plasmids selectable in both E. coli and mouse or human cells. Human DNA sequences were inserted and the recombinant plasmids were used to transfect either mouse or human cells by the Ca-phosphate precipitation technique. We have observed that: (i) competent cells upta...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 1985-08, Vol.13 (15), p.5545-5561
Main Authors: Biamonti, Giuseppe, Valle, Giuliano Della, Talarico, Daniela, Cobianchi, Fabio, Riva, Silvano, Falaschi, Arturo
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have constructed a number of plasmids selectable in both E. coli and mouse or human cells. Human DNA sequences were inserted and the recombinant plasmids were used to transfect either mouse or human cells by the Ca-phosphate precipitation technique. We have observed that: (i) competent cells uptake large amounts of plasmid DNA; (ii) input plasmids persist in trasformed mammalian cells as free unreplicating circular molecules for up to 20 generations; such persistence does not depend on the presence of selective markers; (iii) plasmids incorporated into mouse L-cells undergo widespread rearrangements (in the absence of replication) entailing mostly deletions of both human and bacterial sequences which yield smaller products; the latter appear to be more stable in a subsequent transformation cycle. Surprisingly such rearrangements are almost totally absent in transformed human KB-cells. This property of human KB-cells mayprove useful for the development of a vector apt at cloning and expressing human DNA sequences. Unlike what has been observed in yeast, no “autonomously replicating sequence” can be detected in mammalian cells by randomly cloning human DNA sequences into a selectable plasmid and screening for an increased transformation efficiency.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/13.15.5545