Loading…

Discovery, Synthesis, and Structure–Activity Relationship of a Series of N-Aryl-bicyclo[2.2.1]heptane-2-carboxamides: Characterization of ML213 as a Novel KCNQ2 and KCNQ4 Potassium Channel Opener

Herein we report the discovery, synthesis, and evaluation of a series of N-aryl-bicyclo[2.2.1]heptane-2-carboxamides as selective KCNQ2 (Kv7.2) and KCNQ4 (Kv7.4) channel openers. The best compound, 1 (ML213), has an EC50 of 230 nM (KCNQ2) and 510 nM (KCNQ4) and is selective for KCNQ2 and KCNQ4 chann...

Full description

Saved in:
Bibliographic Details
Published in:ACS chemical neuroscience 2011-10, Vol.2 (10), p.572-577
Main Authors: Yu, Haibo, Wu, Meng, Townsend, Steven D, Zou, Beiyan, Long, Shunyou, Daniels, J. Scott, McManus, Owen B, Li, Min, Lindsley, Craig W, Hopkins, Corey R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein we report the discovery, synthesis, and evaluation of a series of N-aryl-bicyclo[2.2.1]heptane-2-carboxamides as selective KCNQ2 (Kv7.2) and KCNQ4 (Kv7.4) channel openers. The best compound, 1 (ML213), has an EC50 of 230 nM (KCNQ2) and 510 nM (KCNQ4) and is selective for KCNQ2 and KCNQ4 channels versus a large battery of related potassium channels, as well as affording modest brain levels. This represents the first report of unique selectivity profiles for KCNQ2 and KCNQ4 over the other channels (KCNQ1/3/5) and as such should prove to be a valuable tool compound for understanding these channels in regulating neuronal activity.
ISSN:1948-7193
1948-7193
DOI:10.1021/cn200065b