Loading…
TRPM8 acute desensitization is mediated by calmodulin and requires PIP2: distinction from tachyphylaxis
The cold-sensing channel transient receptor potential melastatin 8 (TRPM8) features Ca2+-dependent downregulation, a cellular process underlying somatosensory accommodation in cold environments. The Ca2+-dependent functional downregulation of TRPM8 is manifested with two distinctive phases, acute de...
Saved in:
Published in: | Journal of neurophysiology 2011-12, Vol.106 (6), p.3056-3066 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The cold-sensing channel transient receptor potential melastatin 8 (TRPM8) features Ca2+-dependent downregulation, a cellular process underlying somatosensory accommodation in cold environments. The Ca2+-dependent functional downregulation of TRPM8 is manifested with two distinctive phases, acute desensitization and tachyphylaxis. Here we show in rat dorsal root ganglion neurons that TRPM8 acute desensitization critically depends on phosphatidylinositol 4,5-bisphosphate (PIP2) availability rather than PIP2 hydrolysis and is triggered by calmodulin activation. Tachyphylaxis, on the other hand, is mediated by phospholipase hydrolysis of PIP2 and protein kinase C/phosphatase 1,2A. We further demonstrate that PIP2 switches TRPM8 channel gating to a high-open probability state with short closed times. Ca2+-calmodulin reverses the effect of PIP2, switching channel gating to a low-open probability state with long closed times. Thus, through gating modulation, Ca2+-calmodulin provides a mechanism to rapidly regulate TRPM8 functions in the somatosensory system. |
---|---|
ISSN: | 0022-3077 1522-1598 |
DOI: | 10.1152/jn.00544.2011 |