Loading…
Inactivation of Glycogen Synthase Kinase-3β Is Required for Osteoclast Differentiation
Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here,...
Saved in:
Published in: | The Journal of biological chemistry 2011-11, Vol.286 (45), p.39043-39050 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63 |
container_end_page | 39050 |
container_issue | 45 |
container_start_page | 39043 |
container_title | The Journal of biological chemistry |
container_volume | 286 |
creator | Jang, Hyun Duk Shin, Ji Hye Park, Doo Ri Hong, Jin Hee Yoon, Kwiyeom Ko, Ryeojin Ko, Chang-Yong Kim, Han-Sung Jeong, Daewon Kim, Nacksung Lee, Soo Young |
description | Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here, we show that the GSK-3β inactivation upon receptor activator of NF-κB ligand (RANKL) stimulation is crucial for osteoclast differentiation. Regulation of GSK-3β activity in bone marrow macrophages by retroviral expression of the constitutively active GSK-3β (GSK3β-S9A) mutant inhibits RANKL-induced osteoclastogenesis, whereas expression of the catalytically inactive GSK-3β (GSK3β-K85R) or small interfering RNA (siRNA)-mediated GSK-3β silencing enhances osteoclast formation. Pharmacological inhibition of GSK-3β further confirmed the negative role of GSK-3β in osteoclast formation. We also show that overexpression of the GSK3β-S9A mutant in bone marrow macrophages inhibits RANKL-mediated NFATc1 induction and Ca2+ oscillations. Remarkably, transgenic mice expressing the GSK3β-S9A mutant show an osteopetrotic phenotype due to impaired osteoclast differentiation. Further, osteoclast precursor cells from the transgenic mice show defects in expression and nuclear localization of NFATc1. These findings demonstrate a novel role for GSK-3β in the regulation of bone remodeling through modulation of NFATc1 in RANKL signaling.
Background: Bone homeostasis is maintained by balancing the activities of bone-resorbing osteoclasts and bone-forming osteoblasts.
Results: GSK-3β is inactivated by receptor activator of NF-κB ligand stimulation via serine phosphorylation during osteoclastogenesis.
Conclusion: GSK-3β is crucial for receptor activator of NF-κB ligand-mediated signaling as a negative regulator of osteoclast differentiation.
Significance: GSK-3β acts as a novel negative regulator of osteoclast biology. |
doi_str_mv | 10.1074/jbc.M111.256768 |
format | article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3234729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820505632</els_id><sourcerecordid>S0021925820505632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWqtrd5IXmDa3ZmY2gnipxYrgBd2FTHKmjdSJJtNCX8sH8ZlMrYouzOYE8p_v5HwIHVDSoyQX_afK9K4opT02kLksNlCHkoJnfEAfN1GHEEazkg2KHbQb4xNJR5R0G-0wWqYLIx30MGq0ad1Ct8432Nd4OFsaP4EG3y6bdqoj4EvXpJLx9zc8ivgGXucugMW1D_g6tuDNTMcWn7q6hgBN6z5Re2ir1rMI-1-1i-7Pz-5OLrLx9XB0cjzOjBCszXTFuRUSCkaokFxYoILposwrWgkrqZW2MpDW4Xmec55LU9ScE2GpFTkzknfR0Zr7Mq-ewZr0gaBn6iW4Zx2Wymun_r40bqomfqE444lQJkB_DTDBxxig_umlRK0cq-RYrRyrtePUcfh75E_-W2oKlOsApMUXDoKKxkFjwCZxplXWu3_hH4u0jUE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inactivation of Glycogen Synthase Kinase-3β Is Required for Osteoclast Differentiation</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Jang, Hyun Duk ; Shin, Ji Hye ; Park, Doo Ri ; Hong, Jin Hee ; Yoon, Kwiyeom ; Ko, Ryeojin ; Ko, Chang-Yong ; Kim, Han-Sung ; Jeong, Daewon ; Kim, Nacksung ; Lee, Soo Young</creator><creatorcontrib>Jang, Hyun Duk ; Shin, Ji Hye ; Park, Doo Ri ; Hong, Jin Hee ; Yoon, Kwiyeom ; Ko, Ryeojin ; Ko, Chang-Yong ; Kim, Han-Sung ; Jeong, Daewon ; Kim, Nacksung ; Lee, Soo Young</creatorcontrib><description>Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here, we show that the GSK-3β inactivation upon receptor activator of NF-κB ligand (RANKL) stimulation is crucial for osteoclast differentiation. Regulation of GSK-3β activity in bone marrow macrophages by retroviral expression of the constitutively active GSK-3β (GSK3β-S9A) mutant inhibits RANKL-induced osteoclastogenesis, whereas expression of the catalytically inactive GSK-3β (GSK3β-K85R) or small interfering RNA (siRNA)-mediated GSK-3β silencing enhances osteoclast formation. Pharmacological inhibition of GSK-3β further confirmed the negative role of GSK-3β in osteoclast formation. We also show that overexpression of the GSK3β-S9A mutant in bone marrow macrophages inhibits RANKL-mediated NFATc1 induction and Ca2+ oscillations. Remarkably, transgenic mice expressing the GSK3β-S9A mutant show an osteopetrotic phenotype due to impaired osteoclast differentiation. Further, osteoclast precursor cells from the transgenic mice show defects in expression and nuclear localization of NFATc1. These findings demonstrate a novel role for GSK-3β in the regulation of bone remodeling through modulation of NFATc1 in RANKL signaling.
Background: Bone homeostasis is maintained by balancing the activities of bone-resorbing osteoclasts and bone-forming osteoblasts.
Results: GSK-3β is inactivated by receptor activator of NF-κB ligand stimulation via serine phosphorylation during osteoclastogenesis.
Conclusion: GSK-3β is crucial for receptor activator of NF-κB ligand-mediated signaling as a negative regulator of osteoclast differentiation.
Significance: GSK-3β acts as a novel negative regulator of osteoclast biology.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.256768</identifier><identifier>PMID: 21949120</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus - drug effects ; Active Transport, Cell Nucleus - physiology ; Amino Acid Substitution ; Animals ; Biological Clocks - drug effects ; Biological Clocks - physiology ; Bone ; Bone Marrow Cells - cytology ; Bone Marrow Cells - enzymology ; Bone Remodeling - drug effects ; Bone Remodeling - physiology ; Calcium - metabolism ; Cell Differentiation - drug effects ; Cell Differentiation - physiology ; Cell Nucleus - enzymology ; Cell Nucleus - genetics ; Cells, Cultured ; Differentiation ; Enzyme Activation - drug effects ; Enzyme Activation - physiology ; Enzyme Inhibitors - pharmacology ; Glycogen Synthase Kinase 3 - antagonists & inhibitors ; Glycogen Synthase Kinase 3 - genetics ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta ; Glycogen Synthase Kinase-3 ; Mice ; Mice, Transgenic ; Mutation, Missense ; NFAT Transcription Factor ; NFATC Transcription Factors - genetics ; NFATC Transcription Factors - metabolism ; Osteoclasts ; Osteoclasts - cytology ; Osteoclasts - enzymology ; RANK Ligand - genetics ; RANK Ligand - metabolism ; RNA, Small Interfering - genetics ; Signal Transduction ; Signal Transduction - drug effects ; Signal Transduction - physiology</subject><ispartof>The Journal of biological chemistry, 2011-11, Vol.286 (45), p.39043-39050</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63</citedby><cites>FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234729/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820505632$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21949120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Hyun Duk</creatorcontrib><creatorcontrib>Shin, Ji Hye</creatorcontrib><creatorcontrib>Park, Doo Ri</creatorcontrib><creatorcontrib>Hong, Jin Hee</creatorcontrib><creatorcontrib>Yoon, Kwiyeom</creatorcontrib><creatorcontrib>Ko, Ryeojin</creatorcontrib><creatorcontrib>Ko, Chang-Yong</creatorcontrib><creatorcontrib>Kim, Han-Sung</creatorcontrib><creatorcontrib>Jeong, Daewon</creatorcontrib><creatorcontrib>Kim, Nacksung</creatorcontrib><creatorcontrib>Lee, Soo Young</creatorcontrib><title>Inactivation of Glycogen Synthase Kinase-3β Is Required for Osteoclast Differentiation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here, we show that the GSK-3β inactivation upon receptor activator of NF-κB ligand (RANKL) stimulation is crucial for osteoclast differentiation. Regulation of GSK-3β activity in bone marrow macrophages by retroviral expression of the constitutively active GSK-3β (GSK3β-S9A) mutant inhibits RANKL-induced osteoclastogenesis, whereas expression of the catalytically inactive GSK-3β (GSK3β-K85R) or small interfering RNA (siRNA)-mediated GSK-3β silencing enhances osteoclast formation. Pharmacological inhibition of GSK-3β further confirmed the negative role of GSK-3β in osteoclast formation. We also show that overexpression of the GSK3β-S9A mutant in bone marrow macrophages inhibits RANKL-mediated NFATc1 induction and Ca2+ oscillations. Remarkably, transgenic mice expressing the GSK3β-S9A mutant show an osteopetrotic phenotype due to impaired osteoclast differentiation. Further, osteoclast precursor cells from the transgenic mice show defects in expression and nuclear localization of NFATc1. These findings demonstrate a novel role for GSK-3β in the regulation of bone remodeling through modulation of NFATc1 in RANKL signaling.
Background: Bone homeostasis is maintained by balancing the activities of bone-resorbing osteoclasts and bone-forming osteoblasts.
Results: GSK-3β is inactivated by receptor activator of NF-κB ligand stimulation via serine phosphorylation during osteoclastogenesis.
Conclusion: GSK-3β is crucial for receptor activator of NF-κB ligand-mediated signaling as a negative regulator of osteoclast differentiation.
Significance: GSK-3β acts as a novel negative regulator of osteoclast biology.</description><subject>Active Transport, Cell Nucleus - drug effects</subject><subject>Active Transport, Cell Nucleus - physiology</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Biological Clocks - drug effects</subject><subject>Biological Clocks - physiology</subject><subject>Bone</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - enzymology</subject><subject>Bone Remodeling - drug effects</subject><subject>Bone Remodeling - physiology</subject><subject>Calcium - metabolism</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Nucleus - enzymology</subject><subject>Cell Nucleus - genetics</subject><subject>Cells, Cultured</subject><subject>Differentiation</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Activation - physiology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Glycogen Synthase Kinase 3 - antagonists & inhibitors</subject><subject>Glycogen Synthase Kinase 3 - genetics</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>Glycogen Synthase Kinase-3</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mutation, Missense</subject><subject>NFAT Transcription Factor</subject><subject>NFATC Transcription Factors - genetics</subject><subject>NFATC Transcription Factors - metabolism</subject><subject>Osteoclasts</subject><subject>Osteoclasts - cytology</subject><subject>Osteoclasts - enzymology</subject><subject>RANK Ligand - genetics</subject><subject>RANK Ligand - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>Signal Transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWqtrd5IXmDa3ZmY2gnipxYrgBd2FTHKmjdSJJtNCX8sH8ZlMrYouzOYE8p_v5HwIHVDSoyQX_afK9K4opT02kLksNlCHkoJnfEAfN1GHEEazkg2KHbQb4xNJR5R0G-0wWqYLIx30MGq0ad1Ct8432Nd4OFsaP4EG3y6bdqoj4EvXpJLx9zc8ivgGXucugMW1D_g6tuDNTMcWn7q6hgBN6z5Re2ir1rMI-1-1i-7Pz-5OLrLx9XB0cjzOjBCszXTFuRUSCkaokFxYoILposwrWgkrqZW2MpDW4Xmec55LU9ScE2GpFTkzknfR0Zr7Mq-ewZr0gaBn6iW4Zx2Wymun_r40bqomfqE444lQJkB_DTDBxxig_umlRK0cq-RYrRyrtePUcfh75E_-W2oKlOsApMUXDoKKxkFjwCZxplXWu3_hH4u0jUE</recordid><startdate>20111111</startdate><enddate>20111111</enddate><creator>Jang, Hyun Duk</creator><creator>Shin, Ji Hye</creator><creator>Park, Doo Ri</creator><creator>Hong, Jin Hee</creator><creator>Yoon, Kwiyeom</creator><creator>Ko, Ryeojin</creator><creator>Ko, Chang-Yong</creator><creator>Kim, Han-Sung</creator><creator>Jeong, Daewon</creator><creator>Kim, Nacksung</creator><creator>Lee, Soo Young</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20111111</creationdate><title>Inactivation of Glycogen Synthase Kinase-3β Is Required for Osteoclast Differentiation</title><author>Jang, Hyun Duk ; Shin, Ji Hye ; Park, Doo Ri ; Hong, Jin Hee ; Yoon, Kwiyeom ; Ko, Ryeojin ; Ko, Chang-Yong ; Kim, Han-Sung ; Jeong, Daewon ; Kim, Nacksung ; Lee, Soo Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Active Transport, Cell Nucleus - drug effects</topic><topic>Active Transport, Cell Nucleus - physiology</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Biological Clocks - drug effects</topic><topic>Biological Clocks - physiology</topic><topic>Bone</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - enzymology</topic><topic>Bone Remodeling - drug effects</topic><topic>Bone Remodeling - physiology</topic><topic>Calcium - metabolism</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Nucleus - enzymology</topic><topic>Cell Nucleus - genetics</topic><topic>Cells, Cultured</topic><topic>Differentiation</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Activation - physiology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Glycogen Synthase Kinase 3 - antagonists & inhibitors</topic><topic>Glycogen Synthase Kinase 3 - genetics</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>Glycogen Synthase Kinase-3</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mutation, Missense</topic><topic>NFAT Transcription Factor</topic><topic>NFATC Transcription Factors - genetics</topic><topic>NFATC Transcription Factors - metabolism</topic><topic>Osteoclasts</topic><topic>Osteoclasts - cytology</topic><topic>Osteoclasts - enzymology</topic><topic>RANK Ligand - genetics</topic><topic>RANK Ligand - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>Signal Transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Hyun Duk</creatorcontrib><creatorcontrib>Shin, Ji Hye</creatorcontrib><creatorcontrib>Park, Doo Ri</creatorcontrib><creatorcontrib>Hong, Jin Hee</creatorcontrib><creatorcontrib>Yoon, Kwiyeom</creatorcontrib><creatorcontrib>Ko, Ryeojin</creatorcontrib><creatorcontrib>Ko, Chang-Yong</creatorcontrib><creatorcontrib>Kim, Han-Sung</creatorcontrib><creatorcontrib>Jeong, Daewon</creatorcontrib><creatorcontrib>Kim, Nacksung</creatorcontrib><creatorcontrib>Lee, Soo Young</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Hyun Duk</au><au>Shin, Ji Hye</au><au>Park, Doo Ri</au><au>Hong, Jin Hee</au><au>Yoon, Kwiyeom</au><au>Ko, Ryeojin</au><au>Ko, Chang-Yong</au><au>Kim, Han-Sung</au><au>Jeong, Daewon</au><au>Kim, Nacksung</au><au>Lee, Soo Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inactivation of Glycogen Synthase Kinase-3β Is Required for Osteoclast Differentiation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-11-11</date><risdate>2011</risdate><volume>286</volume><issue>45</issue><spage>39043</spage><epage>39050</epage><pages>39043-39050</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here, we show that the GSK-3β inactivation upon receptor activator of NF-κB ligand (RANKL) stimulation is crucial for osteoclast differentiation. Regulation of GSK-3β activity in bone marrow macrophages by retroviral expression of the constitutively active GSK-3β (GSK3β-S9A) mutant inhibits RANKL-induced osteoclastogenesis, whereas expression of the catalytically inactive GSK-3β (GSK3β-K85R) or small interfering RNA (siRNA)-mediated GSK-3β silencing enhances osteoclast formation. Pharmacological inhibition of GSK-3β further confirmed the negative role of GSK-3β in osteoclast formation. We also show that overexpression of the GSK3β-S9A mutant in bone marrow macrophages inhibits RANKL-mediated NFATc1 induction and Ca2+ oscillations. Remarkably, transgenic mice expressing the GSK3β-S9A mutant show an osteopetrotic phenotype due to impaired osteoclast differentiation. Further, osteoclast precursor cells from the transgenic mice show defects in expression and nuclear localization of NFATc1. These findings demonstrate a novel role for GSK-3β in the regulation of bone remodeling through modulation of NFATc1 in RANKL signaling.
Background: Bone homeostasis is maintained by balancing the activities of bone-resorbing osteoclasts and bone-forming osteoblasts.
Results: GSK-3β is inactivated by receptor activator of NF-κB ligand stimulation via serine phosphorylation during osteoclastogenesis.
Conclusion: GSK-3β is crucial for receptor activator of NF-κB ligand-mediated signaling as a negative regulator of osteoclast differentiation.
Significance: GSK-3β acts as a novel negative regulator of osteoclast biology.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21949120</pmid><doi>10.1074/jbc.M111.256768</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2011-11, Vol.286 (45), p.39043-39050 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3234729 |
source | Elsevier ScienceDirect Journals; PubMed Central |
subjects | Active Transport, Cell Nucleus - drug effects Active Transport, Cell Nucleus - physiology Amino Acid Substitution Animals Biological Clocks - drug effects Biological Clocks - physiology Bone Bone Marrow Cells - cytology Bone Marrow Cells - enzymology Bone Remodeling - drug effects Bone Remodeling - physiology Calcium - metabolism Cell Differentiation - drug effects Cell Differentiation - physiology Cell Nucleus - enzymology Cell Nucleus - genetics Cells, Cultured Differentiation Enzyme Activation - drug effects Enzyme Activation - physiology Enzyme Inhibitors - pharmacology Glycogen Synthase Kinase 3 - antagonists & inhibitors Glycogen Synthase Kinase 3 - genetics Glycogen Synthase Kinase 3 - metabolism Glycogen Synthase Kinase 3 beta Glycogen Synthase Kinase-3 Mice Mice, Transgenic Mutation, Missense NFAT Transcription Factor NFATC Transcription Factors - genetics NFATC Transcription Factors - metabolism Osteoclasts Osteoclasts - cytology Osteoclasts - enzymology RANK Ligand - genetics RANK Ligand - metabolism RNA, Small Interfering - genetics Signal Transduction Signal Transduction - drug effects Signal Transduction - physiology |
title | Inactivation of Glycogen Synthase Kinase-3β Is Required for Osteoclast Differentiation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inactivation%20of%20Glycogen%20Synthase%20Kinase-3%CE%B2%20Is%20Required%20for%20Osteoclast%20Differentiation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Jang,%20Hyun%20Duk&rft.date=2011-11-11&rft.volume=286&rft.issue=45&rft.spage=39043&rft.epage=39050&rft.pages=39043-39050&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.256768&rft_dat=%3Celsevier_pubme%3ES0021925820505632%3C/elsevier_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/21949120&rfr_iscdi=true |