Loading…

Inactivation of Glycogen Synthase Kinase-3β Is Required for Osteoclast Differentiation

Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here,...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2011-11, Vol.286 (45), p.39043-39050
Main Authors: Jang, Hyun Duk, Shin, Ji Hye, Park, Doo Ri, Hong, Jin Hee, Yoon, Kwiyeom, Ko, Ryeojin, Ko, Chang-Yong, Kim, Han-Sung, Jeong, Daewon, Kim, Nacksung, Lee, Soo Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63
cites cdi_FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63
container_end_page 39050
container_issue 45
container_start_page 39043
container_title The Journal of biological chemistry
container_volume 286
creator Jang, Hyun Duk
Shin, Ji Hye
Park, Doo Ri
Hong, Jin Hee
Yoon, Kwiyeom
Ko, Ryeojin
Ko, Chang-Yong
Kim, Han-Sung
Jeong, Daewon
Kim, Nacksung
Lee, Soo Young
description Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here, we show that the GSK-3β inactivation upon receptor activator of NF-κB ligand (RANKL) stimulation is crucial for osteoclast differentiation. Regulation of GSK-3β activity in bone marrow macrophages by retroviral expression of the constitutively active GSK-3β (GSK3β-S9A) mutant inhibits RANKL-induced osteoclastogenesis, whereas expression of the catalytically inactive GSK-3β (GSK3β-K85R) or small interfering RNA (siRNA)-mediated GSK-3β silencing enhances osteoclast formation. Pharmacological inhibition of GSK-3β further confirmed the negative role of GSK-3β in osteoclast formation. We also show that overexpression of the GSK3β-S9A mutant in bone marrow macrophages inhibits RANKL-mediated NFATc1 induction and Ca2+ oscillations. Remarkably, transgenic mice expressing the GSK3β-S9A mutant show an osteopetrotic phenotype due to impaired osteoclast differentiation. Further, osteoclast precursor cells from the transgenic mice show defects in expression and nuclear localization of NFATc1. These findings demonstrate a novel role for GSK-3β in the regulation of bone remodeling through modulation of NFATc1 in RANKL signaling. Background: Bone homeostasis is maintained by balancing the activities of bone-resorbing osteoclasts and bone-forming osteoblasts. Results: GSK-3β is inactivated by receptor activator of NF-κB ligand stimulation via serine phosphorylation during osteoclastogenesis. Conclusion: GSK-3β is crucial for receptor activator of NF-κB ligand-mediated signaling as a negative regulator of osteoclast differentiation. Significance: GSK-3β acts as a novel negative regulator of osteoclast biology.
doi_str_mv 10.1074/jbc.M111.256768
format article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3234729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820505632</els_id><sourcerecordid>S0021925820505632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWqtrd5IXmDa3ZmY2gnipxYrgBd2FTHKmjdSJJtNCX8sH8ZlMrYouzOYE8p_v5HwIHVDSoyQX_afK9K4opT02kLksNlCHkoJnfEAfN1GHEEazkg2KHbQb4xNJR5R0G-0wWqYLIx30MGq0ad1Ct8432Nd4OFsaP4EG3y6bdqoj4EvXpJLx9zc8ivgGXucugMW1D_g6tuDNTMcWn7q6hgBN6z5Re2ir1rMI-1-1i-7Pz-5OLrLx9XB0cjzOjBCszXTFuRUSCkaokFxYoILposwrWgkrqZW2MpDW4Xmec55LU9ScE2GpFTkzknfR0Zr7Mq-ewZr0gaBn6iW4Zx2Wymun_r40bqomfqE444lQJkB_DTDBxxig_umlRK0cq-RYrRyrtePUcfh75E_-W2oKlOsApMUXDoKKxkFjwCZxplXWu3_hH4u0jUE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inactivation of Glycogen Synthase Kinase-3β Is Required for Osteoclast Differentiation</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Jang, Hyun Duk ; Shin, Ji Hye ; Park, Doo Ri ; Hong, Jin Hee ; Yoon, Kwiyeom ; Ko, Ryeojin ; Ko, Chang-Yong ; Kim, Han-Sung ; Jeong, Daewon ; Kim, Nacksung ; Lee, Soo Young</creator><creatorcontrib>Jang, Hyun Duk ; Shin, Ji Hye ; Park, Doo Ri ; Hong, Jin Hee ; Yoon, Kwiyeom ; Ko, Ryeojin ; Ko, Chang-Yong ; Kim, Han-Sung ; Jeong, Daewon ; Kim, Nacksung ; Lee, Soo Young</creatorcontrib><description>Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here, we show that the GSK-3β inactivation upon receptor activator of NF-κB ligand (RANKL) stimulation is crucial for osteoclast differentiation. Regulation of GSK-3β activity in bone marrow macrophages by retroviral expression of the constitutively active GSK-3β (GSK3β-S9A) mutant inhibits RANKL-induced osteoclastogenesis, whereas expression of the catalytically inactive GSK-3β (GSK3β-K85R) or small interfering RNA (siRNA)-mediated GSK-3β silencing enhances osteoclast formation. Pharmacological inhibition of GSK-3β further confirmed the negative role of GSK-3β in osteoclast formation. We also show that overexpression of the GSK3β-S9A mutant in bone marrow macrophages inhibits RANKL-mediated NFATc1 induction and Ca2+ oscillations. Remarkably, transgenic mice expressing the GSK3β-S9A mutant show an osteopetrotic phenotype due to impaired osteoclast differentiation. Further, osteoclast precursor cells from the transgenic mice show defects in expression and nuclear localization of NFATc1. These findings demonstrate a novel role for GSK-3β in the regulation of bone remodeling through modulation of NFATc1 in RANKL signaling. Background: Bone homeostasis is maintained by balancing the activities of bone-resorbing osteoclasts and bone-forming osteoblasts. Results: GSK-3β is inactivated by receptor activator of NF-κB ligand stimulation via serine phosphorylation during osteoclastogenesis. Conclusion: GSK-3β is crucial for receptor activator of NF-κB ligand-mediated signaling as a negative regulator of osteoclast differentiation. Significance: GSK-3β acts as a novel negative regulator of osteoclast biology.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.256768</identifier><identifier>PMID: 21949120</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus - drug effects ; Active Transport, Cell Nucleus - physiology ; Amino Acid Substitution ; Animals ; Biological Clocks - drug effects ; Biological Clocks - physiology ; Bone ; Bone Marrow Cells - cytology ; Bone Marrow Cells - enzymology ; Bone Remodeling - drug effects ; Bone Remodeling - physiology ; Calcium - metabolism ; Cell Differentiation - drug effects ; Cell Differentiation - physiology ; Cell Nucleus - enzymology ; Cell Nucleus - genetics ; Cells, Cultured ; Differentiation ; Enzyme Activation - drug effects ; Enzyme Activation - physiology ; Enzyme Inhibitors - pharmacology ; Glycogen Synthase Kinase 3 - antagonists &amp; inhibitors ; Glycogen Synthase Kinase 3 - genetics ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta ; Glycogen Synthase Kinase-3 ; Mice ; Mice, Transgenic ; Mutation, Missense ; NFAT Transcription Factor ; NFATC Transcription Factors - genetics ; NFATC Transcription Factors - metabolism ; Osteoclasts ; Osteoclasts - cytology ; Osteoclasts - enzymology ; RANK Ligand - genetics ; RANK Ligand - metabolism ; RNA, Small Interfering - genetics ; Signal Transduction ; Signal Transduction - drug effects ; Signal Transduction - physiology</subject><ispartof>The Journal of biological chemistry, 2011-11, Vol.286 (45), p.39043-39050</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63</citedby><cites>FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234729/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820505632$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21949120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Hyun Duk</creatorcontrib><creatorcontrib>Shin, Ji Hye</creatorcontrib><creatorcontrib>Park, Doo Ri</creatorcontrib><creatorcontrib>Hong, Jin Hee</creatorcontrib><creatorcontrib>Yoon, Kwiyeom</creatorcontrib><creatorcontrib>Ko, Ryeojin</creatorcontrib><creatorcontrib>Ko, Chang-Yong</creatorcontrib><creatorcontrib>Kim, Han-Sung</creatorcontrib><creatorcontrib>Jeong, Daewon</creatorcontrib><creatorcontrib>Kim, Nacksung</creatorcontrib><creatorcontrib>Lee, Soo Young</creatorcontrib><title>Inactivation of Glycogen Synthase Kinase-3β Is Required for Osteoclast Differentiation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here, we show that the GSK-3β inactivation upon receptor activator of NF-κB ligand (RANKL) stimulation is crucial for osteoclast differentiation. Regulation of GSK-3β activity in bone marrow macrophages by retroviral expression of the constitutively active GSK-3β (GSK3β-S9A) mutant inhibits RANKL-induced osteoclastogenesis, whereas expression of the catalytically inactive GSK-3β (GSK3β-K85R) or small interfering RNA (siRNA)-mediated GSK-3β silencing enhances osteoclast formation. Pharmacological inhibition of GSK-3β further confirmed the negative role of GSK-3β in osteoclast formation. We also show that overexpression of the GSK3β-S9A mutant in bone marrow macrophages inhibits RANKL-mediated NFATc1 induction and Ca2+ oscillations. Remarkably, transgenic mice expressing the GSK3β-S9A mutant show an osteopetrotic phenotype due to impaired osteoclast differentiation. Further, osteoclast precursor cells from the transgenic mice show defects in expression and nuclear localization of NFATc1. These findings demonstrate a novel role for GSK-3β in the regulation of bone remodeling through modulation of NFATc1 in RANKL signaling. Background: Bone homeostasis is maintained by balancing the activities of bone-resorbing osteoclasts and bone-forming osteoblasts. Results: GSK-3β is inactivated by receptor activator of NF-κB ligand stimulation via serine phosphorylation during osteoclastogenesis. Conclusion: GSK-3β is crucial for receptor activator of NF-κB ligand-mediated signaling as a negative regulator of osteoclast differentiation. Significance: GSK-3β acts as a novel negative regulator of osteoclast biology.</description><subject>Active Transport, Cell Nucleus - drug effects</subject><subject>Active Transport, Cell Nucleus - physiology</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Biological Clocks - drug effects</subject><subject>Biological Clocks - physiology</subject><subject>Bone</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - enzymology</subject><subject>Bone Remodeling - drug effects</subject><subject>Bone Remodeling - physiology</subject><subject>Calcium - metabolism</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Nucleus - enzymology</subject><subject>Cell Nucleus - genetics</subject><subject>Cells, Cultured</subject><subject>Differentiation</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Activation - physiology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Glycogen Synthase Kinase 3 - antagonists &amp; inhibitors</subject><subject>Glycogen Synthase Kinase 3 - genetics</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>Glycogen Synthase Kinase-3</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mutation, Missense</subject><subject>NFAT Transcription Factor</subject><subject>NFATC Transcription Factors - genetics</subject><subject>NFATC Transcription Factors - metabolism</subject><subject>Osteoclasts</subject><subject>Osteoclasts - cytology</subject><subject>Osteoclasts - enzymology</subject><subject>RANK Ligand - genetics</subject><subject>RANK Ligand - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>Signal Transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWqtrd5IXmDa3ZmY2gnipxYrgBd2FTHKmjdSJJtNCX8sH8ZlMrYouzOYE8p_v5HwIHVDSoyQX_afK9K4opT02kLksNlCHkoJnfEAfN1GHEEazkg2KHbQb4xNJR5R0G-0wWqYLIx30MGq0ad1Ct8432Nd4OFsaP4EG3y6bdqoj4EvXpJLx9zc8ivgGXucugMW1D_g6tuDNTMcWn7q6hgBN6z5Re2ir1rMI-1-1i-7Pz-5OLrLx9XB0cjzOjBCszXTFuRUSCkaokFxYoILposwrWgkrqZW2MpDW4Xmec55LU9ScE2GpFTkzknfR0Zr7Mq-ewZr0gaBn6iW4Zx2Wymun_r40bqomfqE444lQJkB_DTDBxxig_umlRK0cq-RYrRyrtePUcfh75E_-W2oKlOsApMUXDoKKxkFjwCZxplXWu3_hH4u0jUE</recordid><startdate>20111111</startdate><enddate>20111111</enddate><creator>Jang, Hyun Duk</creator><creator>Shin, Ji Hye</creator><creator>Park, Doo Ri</creator><creator>Hong, Jin Hee</creator><creator>Yoon, Kwiyeom</creator><creator>Ko, Ryeojin</creator><creator>Ko, Chang-Yong</creator><creator>Kim, Han-Sung</creator><creator>Jeong, Daewon</creator><creator>Kim, Nacksung</creator><creator>Lee, Soo Young</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20111111</creationdate><title>Inactivation of Glycogen Synthase Kinase-3β Is Required for Osteoclast Differentiation</title><author>Jang, Hyun Duk ; Shin, Ji Hye ; Park, Doo Ri ; Hong, Jin Hee ; Yoon, Kwiyeom ; Ko, Ryeojin ; Ko, Chang-Yong ; Kim, Han-Sung ; Jeong, Daewon ; Kim, Nacksung ; Lee, Soo Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Active Transport, Cell Nucleus - drug effects</topic><topic>Active Transport, Cell Nucleus - physiology</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Biological Clocks - drug effects</topic><topic>Biological Clocks - physiology</topic><topic>Bone</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - enzymology</topic><topic>Bone Remodeling - drug effects</topic><topic>Bone Remodeling - physiology</topic><topic>Calcium - metabolism</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Nucleus - enzymology</topic><topic>Cell Nucleus - genetics</topic><topic>Cells, Cultured</topic><topic>Differentiation</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Activation - physiology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Glycogen Synthase Kinase 3 - antagonists &amp; inhibitors</topic><topic>Glycogen Synthase Kinase 3 - genetics</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>Glycogen Synthase Kinase-3</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mutation, Missense</topic><topic>NFAT Transcription Factor</topic><topic>NFATC Transcription Factors - genetics</topic><topic>NFATC Transcription Factors - metabolism</topic><topic>Osteoclasts</topic><topic>Osteoclasts - cytology</topic><topic>Osteoclasts - enzymology</topic><topic>RANK Ligand - genetics</topic><topic>RANK Ligand - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>Signal Transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Hyun Duk</creatorcontrib><creatorcontrib>Shin, Ji Hye</creatorcontrib><creatorcontrib>Park, Doo Ri</creatorcontrib><creatorcontrib>Hong, Jin Hee</creatorcontrib><creatorcontrib>Yoon, Kwiyeom</creatorcontrib><creatorcontrib>Ko, Ryeojin</creatorcontrib><creatorcontrib>Ko, Chang-Yong</creatorcontrib><creatorcontrib>Kim, Han-Sung</creatorcontrib><creatorcontrib>Jeong, Daewon</creatorcontrib><creatorcontrib>Kim, Nacksung</creatorcontrib><creatorcontrib>Lee, Soo Young</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Hyun Duk</au><au>Shin, Ji Hye</au><au>Park, Doo Ri</au><au>Hong, Jin Hee</au><au>Yoon, Kwiyeom</au><au>Ko, Ryeojin</au><au>Ko, Chang-Yong</au><au>Kim, Han-Sung</au><au>Jeong, Daewon</au><au>Kim, Nacksung</au><au>Lee, Soo Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inactivation of Glycogen Synthase Kinase-3β Is Required for Osteoclast Differentiation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-11-11</date><risdate>2011</risdate><volume>286</volume><issue>45</issue><spage>39043</spage><epage>39050</epage><pages>39043-39050</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here, we show that the GSK-3β inactivation upon receptor activator of NF-κB ligand (RANKL) stimulation is crucial for osteoclast differentiation. Regulation of GSK-3β activity in bone marrow macrophages by retroviral expression of the constitutively active GSK-3β (GSK3β-S9A) mutant inhibits RANKL-induced osteoclastogenesis, whereas expression of the catalytically inactive GSK-3β (GSK3β-K85R) or small interfering RNA (siRNA)-mediated GSK-3β silencing enhances osteoclast formation. Pharmacological inhibition of GSK-3β further confirmed the negative role of GSK-3β in osteoclast formation. We also show that overexpression of the GSK3β-S9A mutant in bone marrow macrophages inhibits RANKL-mediated NFATc1 induction and Ca2+ oscillations. Remarkably, transgenic mice expressing the GSK3β-S9A mutant show an osteopetrotic phenotype due to impaired osteoclast differentiation. Further, osteoclast precursor cells from the transgenic mice show defects in expression and nuclear localization of NFATc1. These findings demonstrate a novel role for GSK-3β in the regulation of bone remodeling through modulation of NFATc1 in RANKL signaling. Background: Bone homeostasis is maintained by balancing the activities of bone-resorbing osteoclasts and bone-forming osteoblasts. Results: GSK-3β is inactivated by receptor activator of NF-κB ligand stimulation via serine phosphorylation during osteoclastogenesis. Conclusion: GSK-3β is crucial for receptor activator of NF-κB ligand-mediated signaling as a negative regulator of osteoclast differentiation. Significance: GSK-3β acts as a novel negative regulator of osteoclast biology.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21949120</pmid><doi>10.1074/jbc.M111.256768</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-11, Vol.286 (45), p.39043-39050
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3234729
source Elsevier ScienceDirect Journals; PubMed Central
subjects Active Transport, Cell Nucleus - drug effects
Active Transport, Cell Nucleus - physiology
Amino Acid Substitution
Animals
Biological Clocks - drug effects
Biological Clocks - physiology
Bone
Bone Marrow Cells - cytology
Bone Marrow Cells - enzymology
Bone Remodeling - drug effects
Bone Remodeling - physiology
Calcium - metabolism
Cell Differentiation - drug effects
Cell Differentiation - physiology
Cell Nucleus - enzymology
Cell Nucleus - genetics
Cells, Cultured
Differentiation
Enzyme Activation - drug effects
Enzyme Activation - physiology
Enzyme Inhibitors - pharmacology
Glycogen Synthase Kinase 3 - antagonists & inhibitors
Glycogen Synthase Kinase 3 - genetics
Glycogen Synthase Kinase 3 - metabolism
Glycogen Synthase Kinase 3 beta
Glycogen Synthase Kinase-3
Mice
Mice, Transgenic
Mutation, Missense
NFAT Transcription Factor
NFATC Transcription Factors - genetics
NFATC Transcription Factors - metabolism
Osteoclasts
Osteoclasts - cytology
Osteoclasts - enzymology
RANK Ligand - genetics
RANK Ligand - metabolism
RNA, Small Interfering - genetics
Signal Transduction
Signal Transduction - drug effects
Signal Transduction - physiology
title Inactivation of Glycogen Synthase Kinase-3β Is Required for Osteoclast Differentiation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inactivation%20of%20Glycogen%20Synthase%20Kinase-3%CE%B2%20Is%20Required%20for%20Osteoclast%20Differentiation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Jang,%20Hyun%20Duk&rft.date=2011-11-11&rft.volume=286&rft.issue=45&rft.spage=39043&rft.epage=39050&rft.pages=39043-39050&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.256768&rft_dat=%3Celsevier_pubme%3ES0021925820505632%3C/elsevier_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-ab33d46e82014634de142a897b1b4d61d6dbce35137773376c8f3304d1d472c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/21949120&rfr_iscdi=true