Loading…

Nuclear Localization of de Novo Thymidylate Biosynthesis Pathway Is Required to Prevent Uracil Accumulation in DNA

Uracil accumulates in DNA as a result of impaired folate-dependent de novo thymidylate biosynthesis, a pathway composed of the enzymes serine hydroxymethyltransferase (SHMT), thymidylate synthase (TYMS), and dihydrofolate reductase. In G1, this pathway is present in the cytoplasm and at S phase unde...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2011-12, Vol.286 (51), p.44015-44022
Main Authors: MacFarlane, Amanda J., Anderson, Donald D., Flodby, Per, Perry, Cheryll A., Allen, Robert H., Stabler, Sally P., Stover, Patrick J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-2c8f192c238277653fb36c1163f9de1a9508506787dcb531b064e13fab6f31143
cites cdi_FETCH-LOGICAL-c442t-2c8f192c238277653fb36c1163f9de1a9508506787dcb531b064e13fab6f31143
container_end_page 44022
container_issue 51
container_start_page 44015
container_title The Journal of biological chemistry
container_volume 286
creator MacFarlane, Amanda J.
Anderson, Donald D.
Flodby, Per
Perry, Cheryll A.
Allen, Robert H.
Stabler, Sally P.
Stover, Patrick J.
description Uracil accumulates in DNA as a result of impaired folate-dependent de novo thymidylate biosynthesis, a pathway composed of the enzymes serine hydroxymethyltransferase (SHMT), thymidylate synthase (TYMS), and dihydrofolate reductase. In G1, this pathway is present in the cytoplasm and at S phase undergoes small ubiquitin-like modifier-dependent translocation to the nucleus. It is not known whether this pathway functions in the cytoplasm, nucleus, or both in vivo. SHMT1 generates 5,10-methylenetetrahydrofolate for de novo thymidylate biosynthesis, a limiting step in the pathway, but also tightly binds 5-methyltetrahydrofolate in the cytoplasm, a required cofactor for homocysteine remethylation. Overexpression of SHMT1 in cell cultures inhibits folate-dependent homocysteine remethylation and enhances thymidylate biosynthesis. In this study, the impact of increased Shmt1 expression on folate-mediated one-carbon metabolism was determined in mice that overexpress the Shmt1 cDNA (Shmt1tg+ mice). Compared with wild type mice, Shmt1tg+ mice exhibited elevated SHMT1 and TYMS protein levels in tissues and evidence for impaired homocysteine remethylation but surprisingly exhibited depressed levels of nuclear SHMT1 and TYMS, lower rates of nuclear de novo thymidylate biosynthesis, and a nearly 10-fold increase in uracil content in hepatic nuclear DNA when fed a folate- and choline-deficient diet. These results demonstrate that SHMT1 and TYMS localization to the nucleus is essential to prevent uracil accumulation in nuclear DNA and indicate that SHMT1-mediated nuclear de novo thymidylate synthesis is critical for maintaining DNA integrity. Background: S phase nuclei contain the thymidylate synthesis pathway. Results: Mice overexpressing a Shmt1 transgene exhibit elevated expression of SHMT1 and TYMS, impaired nuclear localization of the thymidylate biosynthesis pathway, and elevated uracil in DNA. Conclusion: SHMT1 and TYMS localization to the nucleus is essential to prevent uracil accumulation in DNA. Significance: SHMT1-mediated nuclear de novo thymidylate synthesis is critical for maintaining DNA integrity.
doi_str_mv 10.1074/jbc.M111.307629
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3243516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820684940</els_id><sourcerecordid>22057276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-2c8f192c238277653fb36c1163f9de1a9508506787dcb531b064e13fab6f31143</originalsourceid><addsrcrecordid>eNp1kM1O3DAURq0KVKa06-4qv0AGXztxkk2lKX9FGgaEZqTuLMe56RhlYrCTQeHpa5QW0QV348X9vmP7EPIV2BxYnp7cV2Z-DQBzwXLJyw9kBqwQicjg1wGZMcYhKXlWHJFPIdyzOGkJH8kR5yzLeS5nxK8G06L2dOmMbu2z7q3rqGtojXTl9o6ut-PO1mOre6Q_rAtj128x2EBvdb990iO9CvQOHwfrsaa9o7ce99j1dOO1sS1dGDPshnbC2o6erRafyWGj24Bf_p7HZHNxvj79mSxvLq9OF8vEpCnvE26KBkpuuCh4nstMNJWQBkCKpqwRdJmxImMyL_LaVJmAiskUQTS6ko0ASMUx-T5xH4Zqh7WJr_K6VQ_e7rQfldNW_b_p7Fb9dnsleBoFygg4mQDGuxA8Nq9dYOpFv4r61Yt-NemPjW9vr3zN__MdA-UUwPjxvUWvgrHYGayjP9Or2tl34X8AmnOV9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nuclear Localization of de Novo Thymidylate Biosynthesis Pathway Is Required to Prevent Uracil Accumulation in DNA</title><source>PubMed Central Free</source><source>Elsevier ScienceDirect Journals</source><creator>MacFarlane, Amanda J. ; Anderson, Donald D. ; Flodby, Per ; Perry, Cheryll A. ; Allen, Robert H. ; Stabler, Sally P. ; Stover, Patrick J.</creator><creatorcontrib>MacFarlane, Amanda J. ; Anderson, Donald D. ; Flodby, Per ; Perry, Cheryll A. ; Allen, Robert H. ; Stabler, Sally P. ; Stover, Patrick J.</creatorcontrib><description>Uracil accumulates in DNA as a result of impaired folate-dependent de novo thymidylate biosynthesis, a pathway composed of the enzymes serine hydroxymethyltransferase (SHMT), thymidylate synthase (TYMS), and dihydrofolate reductase. In G1, this pathway is present in the cytoplasm and at S phase undergoes small ubiquitin-like modifier-dependent translocation to the nucleus. It is not known whether this pathway functions in the cytoplasm, nucleus, or both in vivo. SHMT1 generates 5,10-methylenetetrahydrofolate for de novo thymidylate biosynthesis, a limiting step in the pathway, but also tightly binds 5-methyltetrahydrofolate in the cytoplasm, a required cofactor for homocysteine remethylation. Overexpression of SHMT1 in cell cultures inhibits folate-dependent homocysteine remethylation and enhances thymidylate biosynthesis. In this study, the impact of increased Shmt1 expression on folate-mediated one-carbon metabolism was determined in mice that overexpress the Shmt1 cDNA (Shmt1tg+ mice). Compared with wild type mice, Shmt1tg+ mice exhibited elevated SHMT1 and TYMS protein levels in tissues and evidence for impaired homocysteine remethylation but surprisingly exhibited depressed levels of nuclear SHMT1 and TYMS, lower rates of nuclear de novo thymidylate biosynthesis, and a nearly 10-fold increase in uracil content in hepatic nuclear DNA when fed a folate- and choline-deficient diet. These results demonstrate that SHMT1 and TYMS localization to the nucleus is essential to prevent uracil accumulation in nuclear DNA and indicate that SHMT1-mediated nuclear de novo thymidylate synthesis is critical for maintaining DNA integrity. Background: S phase nuclei contain the thymidylate synthesis pathway. Results: Mice overexpressing a Shmt1 transgene exhibit elevated expression of SHMT1 and TYMS, impaired nuclear localization of the thymidylate biosynthesis pathway, and elevated uracil in DNA. Conclusion: SHMT1 and TYMS localization to the nucleus is essential to prevent uracil accumulation in DNA. Significance: SHMT1-mediated nuclear de novo thymidylate synthesis is critical for maintaining DNA integrity.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.307629</identifier><identifier>PMID: 22057276</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus ; Animals ; Cell Nucleus - metabolism ; DNA - genetics ; DNA - metabolism ; DNA Synthesis ; Folate ; Glycine Hydroxymethyltransferase - genetics ; Glycine Hydroxymethyltransferase - physiology ; Metabolism ; Mice ; Mice, Transgenic ; Nucleoside Nucleotide Biosynthesis ; Oligonucleotide Array Sequence Analysis ; One Carbon Pool ; Pyridoxal Phosphate ; Pyridoxal Phosphate - metabolism ; Pyrimidine ; Pyrimidines - chemistry ; S Phase ; SHMT1 ; Thymidylate Synthase - chemistry ; Tissue Distribution ; Transgenes ; TYMS ; Uracil - chemistry</subject><ispartof>The Journal of biological chemistry, 2011-12, Vol.286 (51), p.44015-44022</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-2c8f192c238277653fb36c1163f9de1a9508506787dcb531b064e13fab6f31143</citedby><cites>FETCH-LOGICAL-c442t-2c8f192c238277653fb36c1163f9de1a9508506787dcb531b064e13fab6f31143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243516/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820684940$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22057276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacFarlane, Amanda J.</creatorcontrib><creatorcontrib>Anderson, Donald D.</creatorcontrib><creatorcontrib>Flodby, Per</creatorcontrib><creatorcontrib>Perry, Cheryll A.</creatorcontrib><creatorcontrib>Allen, Robert H.</creatorcontrib><creatorcontrib>Stabler, Sally P.</creatorcontrib><creatorcontrib>Stover, Patrick J.</creatorcontrib><title>Nuclear Localization of de Novo Thymidylate Biosynthesis Pathway Is Required to Prevent Uracil Accumulation in DNA</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Uracil accumulates in DNA as a result of impaired folate-dependent de novo thymidylate biosynthesis, a pathway composed of the enzymes serine hydroxymethyltransferase (SHMT), thymidylate synthase (TYMS), and dihydrofolate reductase. In G1, this pathway is present in the cytoplasm and at S phase undergoes small ubiquitin-like modifier-dependent translocation to the nucleus. It is not known whether this pathway functions in the cytoplasm, nucleus, or both in vivo. SHMT1 generates 5,10-methylenetetrahydrofolate for de novo thymidylate biosynthesis, a limiting step in the pathway, but also tightly binds 5-methyltetrahydrofolate in the cytoplasm, a required cofactor for homocysteine remethylation. Overexpression of SHMT1 in cell cultures inhibits folate-dependent homocysteine remethylation and enhances thymidylate biosynthesis. In this study, the impact of increased Shmt1 expression on folate-mediated one-carbon metabolism was determined in mice that overexpress the Shmt1 cDNA (Shmt1tg+ mice). Compared with wild type mice, Shmt1tg+ mice exhibited elevated SHMT1 and TYMS protein levels in tissues and evidence for impaired homocysteine remethylation but surprisingly exhibited depressed levels of nuclear SHMT1 and TYMS, lower rates of nuclear de novo thymidylate biosynthesis, and a nearly 10-fold increase in uracil content in hepatic nuclear DNA when fed a folate- and choline-deficient diet. These results demonstrate that SHMT1 and TYMS localization to the nucleus is essential to prevent uracil accumulation in nuclear DNA and indicate that SHMT1-mediated nuclear de novo thymidylate synthesis is critical for maintaining DNA integrity. Background: S phase nuclei contain the thymidylate synthesis pathway. Results: Mice overexpressing a Shmt1 transgene exhibit elevated expression of SHMT1 and TYMS, impaired nuclear localization of the thymidylate biosynthesis pathway, and elevated uracil in DNA. Conclusion: SHMT1 and TYMS localization to the nucleus is essential to prevent uracil accumulation in DNA. Significance: SHMT1-mediated nuclear de novo thymidylate synthesis is critical for maintaining DNA integrity.</description><subject>Active Transport, Cell Nucleus</subject><subject>Animals</subject><subject>Cell Nucleus - metabolism</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Synthesis</subject><subject>Folate</subject><subject>Glycine Hydroxymethyltransferase - genetics</subject><subject>Glycine Hydroxymethyltransferase - physiology</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Nucleoside Nucleotide Biosynthesis</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>One Carbon Pool</subject><subject>Pyridoxal Phosphate</subject><subject>Pyridoxal Phosphate - metabolism</subject><subject>Pyrimidine</subject><subject>Pyrimidines - chemistry</subject><subject>S Phase</subject><subject>SHMT1</subject><subject>Thymidylate Synthase - chemistry</subject><subject>Tissue Distribution</subject><subject>Transgenes</subject><subject>TYMS</subject><subject>Uracil - chemistry</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kM1O3DAURq0KVKa06-4qv0AGXztxkk2lKX9FGgaEZqTuLMe56RhlYrCTQeHpa5QW0QV348X9vmP7EPIV2BxYnp7cV2Z-DQBzwXLJyw9kBqwQicjg1wGZMcYhKXlWHJFPIdyzOGkJH8kR5yzLeS5nxK8G06L2dOmMbu2z7q3rqGtojXTl9o6ut-PO1mOre6Q_rAtj128x2EBvdb990iO9CvQOHwfrsaa9o7ce99j1dOO1sS1dGDPshnbC2o6erRafyWGj24Bf_p7HZHNxvj79mSxvLq9OF8vEpCnvE26KBkpuuCh4nstMNJWQBkCKpqwRdJmxImMyL_LaVJmAiskUQTS6ko0ASMUx-T5xH4Zqh7WJr_K6VQ_e7rQfldNW_b_p7Fb9dnsleBoFygg4mQDGuxA8Nq9dYOpFv4r61Yt-NemPjW9vr3zN__MdA-UUwPjxvUWvgrHYGayjP9Or2tl34X8AmnOV9A</recordid><startdate>20111223</startdate><enddate>20111223</enddate><creator>MacFarlane, Amanda J.</creator><creator>Anderson, Donald D.</creator><creator>Flodby, Per</creator><creator>Perry, Cheryll A.</creator><creator>Allen, Robert H.</creator><creator>Stabler, Sally P.</creator><creator>Stover, Patrick J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20111223</creationdate><title>Nuclear Localization of de Novo Thymidylate Biosynthesis Pathway Is Required to Prevent Uracil Accumulation in DNA</title><author>MacFarlane, Amanda J. ; Anderson, Donald D. ; Flodby, Per ; Perry, Cheryll A. ; Allen, Robert H. ; Stabler, Sally P. ; Stover, Patrick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-2c8f192c238277653fb36c1163f9de1a9508506787dcb531b064e13fab6f31143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>Animals</topic><topic>Cell Nucleus - metabolism</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Synthesis</topic><topic>Folate</topic><topic>Glycine Hydroxymethyltransferase - genetics</topic><topic>Glycine Hydroxymethyltransferase - physiology</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Nucleoside Nucleotide Biosynthesis</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>One Carbon Pool</topic><topic>Pyridoxal Phosphate</topic><topic>Pyridoxal Phosphate - metabolism</topic><topic>Pyrimidine</topic><topic>Pyrimidines - chemistry</topic><topic>S Phase</topic><topic>SHMT1</topic><topic>Thymidylate Synthase - chemistry</topic><topic>Tissue Distribution</topic><topic>Transgenes</topic><topic>TYMS</topic><topic>Uracil - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacFarlane, Amanda J.</creatorcontrib><creatorcontrib>Anderson, Donald D.</creatorcontrib><creatorcontrib>Flodby, Per</creatorcontrib><creatorcontrib>Perry, Cheryll A.</creatorcontrib><creatorcontrib>Allen, Robert H.</creatorcontrib><creatorcontrib>Stabler, Sally P.</creatorcontrib><creatorcontrib>Stover, Patrick J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacFarlane, Amanda J.</au><au>Anderson, Donald D.</au><au>Flodby, Per</au><au>Perry, Cheryll A.</au><au>Allen, Robert H.</au><au>Stabler, Sally P.</au><au>Stover, Patrick J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear Localization of de Novo Thymidylate Biosynthesis Pathway Is Required to Prevent Uracil Accumulation in DNA</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-12-23</date><risdate>2011</risdate><volume>286</volume><issue>51</issue><spage>44015</spage><epage>44022</epage><pages>44015-44022</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Uracil accumulates in DNA as a result of impaired folate-dependent de novo thymidylate biosynthesis, a pathway composed of the enzymes serine hydroxymethyltransferase (SHMT), thymidylate synthase (TYMS), and dihydrofolate reductase. In G1, this pathway is present in the cytoplasm and at S phase undergoes small ubiquitin-like modifier-dependent translocation to the nucleus. It is not known whether this pathway functions in the cytoplasm, nucleus, or both in vivo. SHMT1 generates 5,10-methylenetetrahydrofolate for de novo thymidylate biosynthesis, a limiting step in the pathway, but also tightly binds 5-methyltetrahydrofolate in the cytoplasm, a required cofactor for homocysteine remethylation. Overexpression of SHMT1 in cell cultures inhibits folate-dependent homocysteine remethylation and enhances thymidylate biosynthesis. In this study, the impact of increased Shmt1 expression on folate-mediated one-carbon metabolism was determined in mice that overexpress the Shmt1 cDNA (Shmt1tg+ mice). Compared with wild type mice, Shmt1tg+ mice exhibited elevated SHMT1 and TYMS protein levels in tissues and evidence for impaired homocysteine remethylation but surprisingly exhibited depressed levels of nuclear SHMT1 and TYMS, lower rates of nuclear de novo thymidylate biosynthesis, and a nearly 10-fold increase in uracil content in hepatic nuclear DNA when fed a folate- and choline-deficient diet. These results demonstrate that SHMT1 and TYMS localization to the nucleus is essential to prevent uracil accumulation in nuclear DNA and indicate that SHMT1-mediated nuclear de novo thymidylate synthesis is critical for maintaining DNA integrity. Background: S phase nuclei contain the thymidylate synthesis pathway. Results: Mice overexpressing a Shmt1 transgene exhibit elevated expression of SHMT1 and TYMS, impaired nuclear localization of the thymidylate biosynthesis pathway, and elevated uracil in DNA. Conclusion: SHMT1 and TYMS localization to the nucleus is essential to prevent uracil accumulation in DNA. Significance: SHMT1-mediated nuclear de novo thymidylate synthesis is critical for maintaining DNA integrity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22057276</pmid><doi>10.1074/jbc.M111.307629</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-12, Vol.286 (51), p.44015-44022
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3243516
source PubMed Central Free; Elsevier ScienceDirect Journals
subjects Active Transport, Cell Nucleus
Animals
Cell Nucleus - metabolism
DNA - genetics
DNA - metabolism
DNA Synthesis
Folate
Glycine Hydroxymethyltransferase - genetics
Glycine Hydroxymethyltransferase - physiology
Metabolism
Mice
Mice, Transgenic
Nucleoside Nucleotide Biosynthesis
Oligonucleotide Array Sequence Analysis
One Carbon Pool
Pyridoxal Phosphate
Pyridoxal Phosphate - metabolism
Pyrimidine
Pyrimidines - chemistry
S Phase
SHMT1
Thymidylate Synthase - chemistry
Tissue Distribution
Transgenes
TYMS
Uracil - chemistry
title Nuclear Localization of de Novo Thymidylate Biosynthesis Pathway Is Required to Prevent Uracil Accumulation in DNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20Localization%20of%20de%20Novo%20Thymidylate%20Biosynthesis%20Pathway%20Is%20Required%20to%20Prevent%20Uracil%20Accumulation%20in%20DNA&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=MacFarlane,%20Amanda%20J.&rft.date=2011-12-23&rft.volume=286&rft.issue=51&rft.spage=44015&rft.epage=44022&rft.pages=44015-44022&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.307629&rft_dat=%3Cpubmed_cross%3E22057276%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-2c8f192c238277653fb36c1163f9de1a9508506787dcb531b064e13fab6f31143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/22057276&rfr_iscdi=true