Loading…

Quest for Spatially Correlated Fluctuations in the FMO Light-Harvesting Complex

The light absorption in light-harvesting complexes is performed by molecules such as chlorophyll, carotenoid, or bilin. Recent experimental findings in some of these complexes suggest the existence of long-lived coherences between the individual pigments at low temperatures. In this context, the que...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2011-02, Vol.115 (4), p.758-764
Main Authors: Olbrich, Carsten, Strümpfer, Johan, Schulten, Klaus, Kleinekathöfer, Ulrich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The light absorption in light-harvesting complexes is performed by molecules such as chlorophyll, carotenoid, or bilin. Recent experimental findings in some of these complexes suggest the existence of long-lived coherences between the individual pigments at low temperatures. In this context, the question arises if the bath-induced fluctuations at different chromophores are spatially correlated or not. Here we investigate this question for the Fenna−Matthews−Olson (FMO) complex of Chlorobaculum tepidum by a combination of atomistic theories, i.e., classical molecular dynamics simulations and semiempirical quantum chemistry calculations. In these investigations at ambient temperatures, only weak correlations between the movements of the chromophores can be detected at the atomic level and none at the more coarse-grained level of site energies. The often-employed uncorrelated bath approximations indeed seem to be valid. Nevertheless, correlations between fluctuations in the electronic couplings between the pigments can be found. Depending on the level of theory employed, also correlations between the fluctuations of site energies and the fluctuations in electronic couplings are discernible.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp1099514