Loading…
Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability
Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms m...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2011-07, Vol.71 (2), p.291-305 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163 |
---|---|
cites | cdi_FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163 |
container_end_page | 305 |
container_issue | 2 |
container_start_page | 291 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 71 |
creator | Steinert, Joern R. Robinson, Susan W. Tong, Huaxia Haustein, Martin D. Kopp-Scheinpflug, Cornelia Forsythe, Ian D. |
description | Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours.
► Synaptic input drives NO-mediated modulation of voltage-gated potassium currents ► High synaptic activity switches the dominant delayed rectifier to Kv2 ► NO volume transmission tunes target neurons to excitatory synaptic drive ► This homeostatic regulation occurs broadly in the brain (brain stem and hippocampus) |
doi_str_mv | 10.1016/j.neuron.2011.05.037 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3245892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627311004946</els_id><sourcerecordid>3380253781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163</originalsourceid><addsrcrecordid>eNp9UU1rFDEYDqLYtfoPRAY8eJoxn5PkIpRadaG0IBWPIZt5Z80ym6xJZmn_vVm31o-Dp0DyfOZB6CXBHcGkf7vpAswpho5iQjosOszkI7QgWMuWE60fowVWum97KtkJepbzBmPChSZP0QklUhOq1AJ9vfIleddc3_oBmmVubGjOXPF7X-7a97CDMEAozWdYz5MtMTVxbG5sWkNprn7aN8tQBUKuGhe3zhe78lPlPkdPRjtleHF_nqIvHy5uzj-1l9cfl-dnl60TSpV2RSTlK87s2Gu2wlIwJdWIuRgltU4zLRgfYCAajwNmMDoy1HtnFafSCdKzU_TuqLubV1sYXA2b7GR2yW9tujPRevP3S_DfzDruDaNcKE2rwJt7gRS_z5CL2frsYJpsgDhnozSjvdLqYPX6H-QmzinUdoYILlmNhElF8SPKpZhzgvEhC8HmMJzZmONw5jCcwcLU4Srt1Z89Hki_lvpdFOpv7j0kk52H4GDwCVwxQ_T_d_gBUCqslg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547342701</pqid></control><display><type>article</type><title>Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Steinert, Joern R. ; Robinson, Susan W. ; Tong, Huaxia ; Haustein, Martin D. ; Kopp-Scheinpflug, Cornelia ; Forsythe, Ian D.</creator><creatorcontrib>Steinert, Joern R. ; Robinson, Susan W. ; Tong, Huaxia ; Haustein, Martin D. ; Kopp-Scheinpflug, Cornelia ; Forsythe, Ian D.</creatorcontrib><description>Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours.
► Synaptic input drives NO-mediated modulation of voltage-gated potassium currents ► High synaptic activity switches the dominant delayed rectifier to Kv2 ► NO volume transmission tunes target neurons to excitatory synaptic drive ► This homeostatic regulation occurs broadly in the brain (brain stem and hippocampus)</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2011.05.037</identifier><identifier>PMID: 21791288</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - drug effects ; Action Potentials - genetics ; Action Potentials - physiology ; Analysis of Variance ; Animals ; Animals, Newborn ; Biophysics ; Brain ; Brain Stem - cytology ; Drug Interactions ; Electric Stimulation - methods ; Enzyme Inhibitors - pharmacology ; Excitatory Amino Acid Antagonists - pharmacology ; Excitatory Postsynaptic Potentials - drug effects ; Gene Expression Regulation - drug effects ; Glutamic Acid - metabolism ; Hippocampus - cytology ; Hydrazines - pharmacology ; In Vitro Techniques ; Indoles - pharmacology ; Kinases ; Lasers ; Mice ; Mice, Inbred CBA ; Mice, Knockout ; Neurons ; Neurons - metabolism ; Nitric Oxide - deficiency ; Nitric Oxide - metabolism ; Nitric Oxide - pharmacology ; Nitric Oxide Donors - pharmacology ; Nitroprusside - pharmacology ; Phosphorylation ; Potassium Channel Blockers - pharmacology ; RNA, Messenger - metabolism ; Shab Potassium Channels - deficiency ; Shab Potassium Channels - metabolism ; Shaw Potassium Channels - deficiency ; Shaw Potassium Channels - metabolism ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Tetraethylammonium - pharmacology ; Transfection ; Variance analysis</subject><ispartof>Neuron (Cambridge, Mass.), 2011-07, Vol.71 (2), p.291-305</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jul 28, 2011</rights><rights>2011 ELL & Excerpta Medica. 2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163</citedby><cites>FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21791288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steinert, Joern R.</creatorcontrib><creatorcontrib>Robinson, Susan W.</creatorcontrib><creatorcontrib>Tong, Huaxia</creatorcontrib><creatorcontrib>Haustein, Martin D.</creatorcontrib><creatorcontrib>Kopp-Scheinpflug, Cornelia</creatorcontrib><creatorcontrib>Forsythe, Ian D.</creatorcontrib><title>Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours.
► Synaptic input drives NO-mediated modulation of voltage-gated potassium currents ► High synaptic activity switches the dominant delayed rectifier to Kv2 ► NO volume transmission tunes target neurons to excitatory synaptic drive ► This homeostatic regulation occurs broadly in the brain (brain stem and hippocampus)</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - genetics</subject><subject>Action Potentials - physiology</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Brain Stem - cytology</subject><subject>Drug Interactions</subject><subject>Electric Stimulation - methods</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Glutamic Acid - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Hydrazines - pharmacology</subject><subject>In Vitro Techniques</subject><subject>Indoles - pharmacology</subject><subject>Kinases</subject><subject>Lasers</subject><subject>Mice</subject><subject>Mice, Inbred CBA</subject><subject>Mice, Knockout</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Nitric Oxide - deficiency</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide - pharmacology</subject><subject>Nitric Oxide Donors - pharmacology</subject><subject>Nitroprusside - pharmacology</subject><subject>Phosphorylation</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>RNA, Messenger - metabolism</subject><subject>Shab Potassium Channels - deficiency</subject><subject>Shab Potassium Channels - metabolism</subject><subject>Shaw Potassium Channels - deficiency</subject><subject>Shaw Potassium Channels - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Tetraethylammonium - pharmacology</subject><subject>Transfection</subject><subject>Variance analysis</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UU1rFDEYDqLYtfoPRAY8eJoxn5PkIpRadaG0IBWPIZt5Z80ym6xJZmn_vVm31o-Dp0DyfOZB6CXBHcGkf7vpAswpho5iQjosOszkI7QgWMuWE60fowVWum97KtkJepbzBmPChSZP0QklUhOq1AJ9vfIleddc3_oBmmVubGjOXPF7X-7a97CDMEAozWdYz5MtMTVxbG5sWkNprn7aN8tQBUKuGhe3zhe78lPlPkdPRjtleHF_nqIvHy5uzj-1l9cfl-dnl60TSpV2RSTlK87s2Gu2wlIwJdWIuRgltU4zLRgfYCAajwNmMDoy1HtnFafSCdKzU_TuqLubV1sYXA2b7GR2yW9tujPRevP3S_DfzDruDaNcKE2rwJt7gRS_z5CL2frsYJpsgDhnozSjvdLqYPX6H-QmzinUdoYILlmNhElF8SPKpZhzgvEhC8HmMJzZmONw5jCcwcLU4Srt1Z89Hki_lvpdFOpv7j0kk52H4GDwCVwxQ_T_d_gBUCqslg</recordid><startdate>20110728</startdate><enddate>20110728</enddate><creator>Steinert, Joern R.</creator><creator>Robinson, Susan W.</creator><creator>Tong, Huaxia</creator><creator>Haustein, Martin D.</creator><creator>Kopp-Scheinpflug, Cornelia</creator><creator>Forsythe, Ian D.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110728</creationdate><title>Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability</title><author>Steinert, Joern R. ; Robinson, Susan W. ; Tong, Huaxia ; Haustein, Martin D. ; Kopp-Scheinpflug, Cornelia ; Forsythe, Ian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - genetics</topic><topic>Action Potentials - physiology</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Brain Stem - cytology</topic><topic>Drug Interactions</topic><topic>Electric Stimulation - methods</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Glutamic Acid - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Hydrazines - pharmacology</topic><topic>In Vitro Techniques</topic><topic>Indoles - pharmacology</topic><topic>Kinases</topic><topic>Lasers</topic><topic>Mice</topic><topic>Mice, Inbred CBA</topic><topic>Mice, Knockout</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Nitric Oxide - deficiency</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide - pharmacology</topic><topic>Nitric Oxide Donors - pharmacology</topic><topic>Nitroprusside - pharmacology</topic><topic>Phosphorylation</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>RNA, Messenger - metabolism</topic><topic>Shab Potassium Channels - deficiency</topic><topic>Shab Potassium Channels - metabolism</topic><topic>Shaw Potassium Channels - deficiency</topic><topic>Shaw Potassium Channels - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Tetraethylammonium - pharmacology</topic><topic>Transfection</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinert, Joern R.</creatorcontrib><creatorcontrib>Robinson, Susan W.</creatorcontrib><creatorcontrib>Tong, Huaxia</creatorcontrib><creatorcontrib>Haustein, Martin D.</creatorcontrib><creatorcontrib>Kopp-Scheinpflug, Cornelia</creatorcontrib><creatorcontrib>Forsythe, Ian D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinert, Joern R.</au><au>Robinson, Susan W.</au><au>Tong, Huaxia</au><au>Haustein, Martin D.</au><au>Kopp-Scheinpflug, Cornelia</au><au>Forsythe, Ian D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2011-07-28</date><risdate>2011</risdate><volume>71</volume><issue>2</issue><spage>291</spage><epage>305</epage><pages>291-305</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours.
► Synaptic input drives NO-mediated modulation of voltage-gated potassium currents ► High synaptic activity switches the dominant delayed rectifier to Kv2 ► NO volume transmission tunes target neurons to excitatory synaptic drive ► This homeostatic regulation occurs broadly in the brain (brain stem and hippocampus)</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21791288</pmid><doi>10.1016/j.neuron.2011.05.037</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2011-07, Vol.71 (2), p.291-305 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3245892 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Action Potentials - drug effects Action Potentials - genetics Action Potentials - physiology Analysis of Variance Animals Animals, Newborn Biophysics Brain Brain Stem - cytology Drug Interactions Electric Stimulation - methods Enzyme Inhibitors - pharmacology Excitatory Amino Acid Antagonists - pharmacology Excitatory Postsynaptic Potentials - drug effects Gene Expression Regulation - drug effects Glutamic Acid - metabolism Hippocampus - cytology Hydrazines - pharmacology In Vitro Techniques Indoles - pharmacology Kinases Lasers Mice Mice, Inbred CBA Mice, Knockout Neurons Neurons - metabolism Nitric Oxide - deficiency Nitric Oxide - metabolism Nitric Oxide - pharmacology Nitric Oxide Donors - pharmacology Nitroprusside - pharmacology Phosphorylation Potassium Channel Blockers - pharmacology RNA, Messenger - metabolism Shab Potassium Channels - deficiency Shab Potassium Channels - metabolism Shaw Potassium Channels - deficiency Shaw Potassium Channels - metabolism Signal Transduction - drug effects Signal Transduction - physiology Tetraethylammonium - pharmacology Transfection Variance analysis |
title | Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20Oxide%20Is%20an%20Activity-Dependent%20Regulator%20of%20Target%20Neuron%20Intrinsic%20Excitability&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Steinert,%20Joern%C2%A0R.&rft.date=2011-07-28&rft.volume=71&rft.issue=2&rft.spage=291&rft.epage=305&rft.pages=291-305&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2011.05.037&rft_dat=%3Cproquest_pubme%3E3380253781%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547342701&rft_id=info:pmid/21791288&rfr_iscdi=true |