Loading…

Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability

Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms m...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2011-07, Vol.71 (2), p.291-305
Main Authors: Steinert, Joern R., Robinson, Susan W., Tong, Huaxia, Haustein, Martin D., Kopp-Scheinpflug, Cornelia, Forsythe, Ian D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163
cites cdi_FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163
container_end_page 305
container_issue 2
container_start_page 291
container_title Neuron (Cambridge, Mass.)
container_volume 71
creator Steinert, Joern R.
Robinson, Susan W.
Tong, Huaxia
Haustein, Martin D.
Kopp-Scheinpflug, Cornelia
Forsythe, Ian D.
description Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours. ► Synaptic input drives NO-mediated modulation of voltage-gated potassium currents ► High synaptic activity switches the dominant delayed rectifier to Kv2 ► NO volume transmission tunes target neurons to excitatory synaptic drive ► This homeostatic regulation occurs broadly in the brain (brain stem and hippocampus)
doi_str_mv 10.1016/j.neuron.2011.05.037
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3245892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627311004946</els_id><sourcerecordid>3380253781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163</originalsourceid><addsrcrecordid>eNp9UU1rFDEYDqLYtfoPRAY8eJoxn5PkIpRadaG0IBWPIZt5Z80ym6xJZmn_vVm31o-Dp0DyfOZB6CXBHcGkf7vpAswpho5iQjosOszkI7QgWMuWE60fowVWum97KtkJepbzBmPChSZP0QklUhOq1AJ9vfIleddc3_oBmmVubGjOXPF7X-7a97CDMEAozWdYz5MtMTVxbG5sWkNprn7aN8tQBUKuGhe3zhe78lPlPkdPRjtleHF_nqIvHy5uzj-1l9cfl-dnl60TSpV2RSTlK87s2Gu2wlIwJdWIuRgltU4zLRgfYCAajwNmMDoy1HtnFafSCdKzU_TuqLubV1sYXA2b7GR2yW9tujPRevP3S_DfzDruDaNcKE2rwJt7gRS_z5CL2frsYJpsgDhnozSjvdLqYPX6H-QmzinUdoYILlmNhElF8SPKpZhzgvEhC8HmMJzZmONw5jCcwcLU4Srt1Z89Hki_lvpdFOpv7j0kk52H4GDwCVwxQ_T_d_gBUCqslg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547342701</pqid></control><display><type>article</type><title>Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Steinert, Joern R. ; Robinson, Susan W. ; Tong, Huaxia ; Haustein, Martin D. ; Kopp-Scheinpflug, Cornelia ; Forsythe, Ian D.</creator><creatorcontrib>Steinert, Joern R. ; Robinson, Susan W. ; Tong, Huaxia ; Haustein, Martin D. ; Kopp-Scheinpflug, Cornelia ; Forsythe, Ian D.</creatorcontrib><description>Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (&gt;3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours. ► Synaptic input drives NO-mediated modulation of voltage-gated potassium currents ► High synaptic activity switches the dominant delayed rectifier to Kv2 ► NO volume transmission tunes target neurons to excitatory synaptic drive ► This homeostatic regulation occurs broadly in the brain (brain stem and hippocampus)</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2011.05.037</identifier><identifier>PMID: 21791288</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - drug effects ; Action Potentials - genetics ; Action Potentials - physiology ; Analysis of Variance ; Animals ; Animals, Newborn ; Biophysics ; Brain ; Brain Stem - cytology ; Drug Interactions ; Electric Stimulation - methods ; Enzyme Inhibitors - pharmacology ; Excitatory Amino Acid Antagonists - pharmacology ; Excitatory Postsynaptic Potentials - drug effects ; Gene Expression Regulation - drug effects ; Glutamic Acid - metabolism ; Hippocampus - cytology ; Hydrazines - pharmacology ; In Vitro Techniques ; Indoles - pharmacology ; Kinases ; Lasers ; Mice ; Mice, Inbred CBA ; Mice, Knockout ; Neurons ; Neurons - metabolism ; Nitric Oxide - deficiency ; Nitric Oxide - metabolism ; Nitric Oxide - pharmacology ; Nitric Oxide Donors - pharmacology ; Nitroprusside - pharmacology ; Phosphorylation ; Potassium Channel Blockers - pharmacology ; RNA, Messenger - metabolism ; Shab Potassium Channels - deficiency ; Shab Potassium Channels - metabolism ; Shaw Potassium Channels - deficiency ; Shaw Potassium Channels - metabolism ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Tetraethylammonium - pharmacology ; Transfection ; Variance analysis</subject><ispartof>Neuron (Cambridge, Mass.), 2011-07, Vol.71 (2), p.291-305</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jul 28, 2011</rights><rights>2011 ELL &amp; Excerpta Medica. 2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163</citedby><cites>FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21791288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steinert, Joern R.</creatorcontrib><creatorcontrib>Robinson, Susan W.</creatorcontrib><creatorcontrib>Tong, Huaxia</creatorcontrib><creatorcontrib>Haustein, Martin D.</creatorcontrib><creatorcontrib>Kopp-Scheinpflug, Cornelia</creatorcontrib><creatorcontrib>Forsythe, Ian D.</creatorcontrib><title>Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (&gt;3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours. ► Synaptic input drives NO-mediated modulation of voltage-gated potassium currents ► High synaptic activity switches the dominant delayed rectifier to Kv2 ► NO volume transmission tunes target neurons to excitatory synaptic drive ► This homeostatic regulation occurs broadly in the brain (brain stem and hippocampus)</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - genetics</subject><subject>Action Potentials - physiology</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Brain Stem - cytology</subject><subject>Drug Interactions</subject><subject>Electric Stimulation - methods</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Glutamic Acid - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Hydrazines - pharmacology</subject><subject>In Vitro Techniques</subject><subject>Indoles - pharmacology</subject><subject>Kinases</subject><subject>Lasers</subject><subject>Mice</subject><subject>Mice, Inbred CBA</subject><subject>Mice, Knockout</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Nitric Oxide - deficiency</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide - pharmacology</subject><subject>Nitric Oxide Donors - pharmacology</subject><subject>Nitroprusside - pharmacology</subject><subject>Phosphorylation</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>RNA, Messenger - metabolism</subject><subject>Shab Potassium Channels - deficiency</subject><subject>Shab Potassium Channels - metabolism</subject><subject>Shaw Potassium Channels - deficiency</subject><subject>Shaw Potassium Channels - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Tetraethylammonium - pharmacology</subject><subject>Transfection</subject><subject>Variance analysis</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UU1rFDEYDqLYtfoPRAY8eJoxn5PkIpRadaG0IBWPIZt5Z80ym6xJZmn_vVm31o-Dp0DyfOZB6CXBHcGkf7vpAswpho5iQjosOszkI7QgWMuWE60fowVWum97KtkJepbzBmPChSZP0QklUhOq1AJ9vfIleddc3_oBmmVubGjOXPF7X-7a97CDMEAozWdYz5MtMTVxbG5sWkNprn7aN8tQBUKuGhe3zhe78lPlPkdPRjtleHF_nqIvHy5uzj-1l9cfl-dnl60TSpV2RSTlK87s2Gu2wlIwJdWIuRgltU4zLRgfYCAajwNmMDoy1HtnFafSCdKzU_TuqLubV1sYXA2b7GR2yW9tujPRevP3S_DfzDruDaNcKE2rwJt7gRS_z5CL2frsYJpsgDhnozSjvdLqYPX6H-QmzinUdoYILlmNhElF8SPKpZhzgvEhC8HmMJzZmONw5jCcwcLU4Srt1Z89Hki_lvpdFOpv7j0kk52H4GDwCVwxQ_T_d_gBUCqslg</recordid><startdate>20110728</startdate><enddate>20110728</enddate><creator>Steinert, Joern R.</creator><creator>Robinson, Susan W.</creator><creator>Tong, Huaxia</creator><creator>Haustein, Martin D.</creator><creator>Kopp-Scheinpflug, Cornelia</creator><creator>Forsythe, Ian D.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110728</creationdate><title>Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability</title><author>Steinert, Joern R. ; Robinson, Susan W. ; Tong, Huaxia ; Haustein, Martin D. ; Kopp-Scheinpflug, Cornelia ; Forsythe, Ian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - genetics</topic><topic>Action Potentials - physiology</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Brain Stem - cytology</topic><topic>Drug Interactions</topic><topic>Electric Stimulation - methods</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Glutamic Acid - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Hydrazines - pharmacology</topic><topic>In Vitro Techniques</topic><topic>Indoles - pharmacology</topic><topic>Kinases</topic><topic>Lasers</topic><topic>Mice</topic><topic>Mice, Inbred CBA</topic><topic>Mice, Knockout</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Nitric Oxide - deficiency</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide - pharmacology</topic><topic>Nitric Oxide Donors - pharmacology</topic><topic>Nitroprusside - pharmacology</topic><topic>Phosphorylation</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>RNA, Messenger - metabolism</topic><topic>Shab Potassium Channels - deficiency</topic><topic>Shab Potassium Channels - metabolism</topic><topic>Shaw Potassium Channels - deficiency</topic><topic>Shaw Potassium Channels - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Tetraethylammonium - pharmacology</topic><topic>Transfection</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinert, Joern R.</creatorcontrib><creatorcontrib>Robinson, Susan W.</creatorcontrib><creatorcontrib>Tong, Huaxia</creatorcontrib><creatorcontrib>Haustein, Martin D.</creatorcontrib><creatorcontrib>Kopp-Scheinpflug, Cornelia</creatorcontrib><creatorcontrib>Forsythe, Ian D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinert, Joern R.</au><au>Robinson, Susan W.</au><au>Tong, Huaxia</au><au>Haustein, Martin D.</au><au>Kopp-Scheinpflug, Cornelia</au><au>Forsythe, Ian D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2011-07-28</date><risdate>2011</risdate><volume>71</volume><issue>2</issue><spage>291</spage><epage>305</epage><pages>291-305</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (&gt;3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours. ► Synaptic input drives NO-mediated modulation of voltage-gated potassium currents ► High synaptic activity switches the dominant delayed rectifier to Kv2 ► NO volume transmission tunes target neurons to excitatory synaptic drive ► This homeostatic regulation occurs broadly in the brain (brain stem and hippocampus)</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21791288</pmid><doi>10.1016/j.neuron.2011.05.037</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2011-07, Vol.71 (2), p.291-305
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3245892
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Action Potentials - drug effects
Action Potentials - genetics
Action Potentials - physiology
Analysis of Variance
Animals
Animals, Newborn
Biophysics
Brain
Brain Stem - cytology
Drug Interactions
Electric Stimulation - methods
Enzyme Inhibitors - pharmacology
Excitatory Amino Acid Antagonists - pharmacology
Excitatory Postsynaptic Potentials - drug effects
Gene Expression Regulation - drug effects
Glutamic Acid - metabolism
Hippocampus - cytology
Hydrazines - pharmacology
In Vitro Techniques
Indoles - pharmacology
Kinases
Lasers
Mice
Mice, Inbred CBA
Mice, Knockout
Neurons
Neurons - metabolism
Nitric Oxide - deficiency
Nitric Oxide - metabolism
Nitric Oxide - pharmacology
Nitric Oxide Donors - pharmacology
Nitroprusside - pharmacology
Phosphorylation
Potassium Channel Blockers - pharmacology
RNA, Messenger - metabolism
Shab Potassium Channels - deficiency
Shab Potassium Channels - metabolism
Shaw Potassium Channels - deficiency
Shaw Potassium Channels - metabolism
Signal Transduction - drug effects
Signal Transduction - physiology
Tetraethylammonium - pharmacology
Transfection
Variance analysis
title Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20Oxide%20Is%20an%20Activity-Dependent%20Regulator%20of%20Target%20Neuron%20Intrinsic%20Excitability&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Steinert,%20Joern%C2%A0R.&rft.date=2011-07-28&rft.volume=71&rft.issue=2&rft.spage=291&rft.epage=305&rft.pages=291-305&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2011.05.037&rft_dat=%3Cproquest_pubme%3E3380253781%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c588t-b1724b43af693b0753878f045f72ac939534ded190fd03efc1d2acca8427c5163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547342701&rft_id=info:pmid/21791288&rfr_iscdi=true