Loading…

Meta-analysis of gene-based genome-wide association studies of bone mineral density in Chinese and European subjects

Summary Gene-based association approach could be regarded as a complementary analysis to the single SNP association analysis. We meta-analyzed the findings from the gene-based association approach using the genome-wide association studies (GWAS) data from Chinese and European subjects, confirmed sev...

Full description

Saved in:
Bibliographic Details
Published in:Osteoporosis international 2012-01, Vol.23 (1), p.131-142
Main Authors: Cheung, C.-L., Sham, P.-C., Xiao, S.-M., Bow, C. H., Kung, A. W.-C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary Gene-based association approach could be regarded as a complementary analysis to the single SNP association analysis. We meta-analyzed the findings from the gene-based association approach using the genome-wide association studies (GWAS) data from Chinese and European subjects, confirmed several well established bone mineral density (BMD) genes, and suggested several novel BMD genes. Introduction The introduction of GWAS has greatly increased the number of genes that are known to be associated with common diseases. Nonetheless, such a single SNP GWAS has a lower power to detect genes with multiple causal variants. We aimed to assess the association of each gene with BMD variation at the spine and hip using gene-based GWAS approach. Methods We studied 778 Hong Kong Southern Chinese (HKSC) women and 5,858 Northern Europeans (dCG); age, sex, and weight were adjusted in the model. The main outcome measure was BMD at the spine and hip. Results Nine genes showed suggestive p value in HKSC, while 4 and 17 genes showed significant and suggestive p values respectively in dCG. Meta-analysis using weighted Z-transformed test confirmed several known BMD genes and suggested some novel ones at 1q21.3, 9q22, 9q33.2, 20p13, and 20q12. Top BMD genes were significantly associated with connective tissue, skeletal, and muscular system development and function ( p  
ISSN:0937-941X
1433-2965
DOI:10.1007/s00198-011-1779-7