Loading…
Silencing of microRNA‐21 in vivo ameliorates autoimmune splenomegaly in lupus mice
MicroRNAs (miRNAs) have been implicated in B cell lineage commitment, regulation of T cell differentiation, TCR signalling, regulation of IFN signalling, and numerous other immunological processes. However, their function in autoimmunity, and specifically in systemic lupus erythematosus (SLE), remai...
Saved in:
Published in: | EMBO molecular medicine 2011-10, Vol.3 (10), p.605-615 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | MicroRNAs (miRNAs) have been implicated in B cell lineage commitment, regulation of T cell differentiation, TCR signalling, regulation of IFN signalling, and numerous other immunological processes. However, their function in autoimmunity, and specifically in systemic lupus erythematosus (SLE), remains poorly understood. B6.Sle123 is a spontaneous genetic mouse model of SLE characterized by autoantibody production, lymphosplenomegaly, and glomerulonephritis. We identified several differentially regulated miRNAs in B and T lymphocytes of B6.Sle123 mice. We found that miR‐21 expression in lupus B and T cells is up‐regulated and that
in vivo
silencing of miR‐21 using a tiny seed‐targeting LNA reversed splenomegaly, one of the cardinal manifestations of autoimmunity in B6.Sle123 mice, and de‐repressed PDCD4 expression
in vivo
and
in vitro
. In addition, treatment with anti‐miR‐21 altered CD4/CD8 T cell ratios and reduced Fas receptor‐expressing lymphocyte populations. Our study shows that tiny LNAs can be used to efficiently antagonize endogenous miRNAs in peripheral lymphocytes
in vivo
and in primary lymphocytes cultured
ex vivo
and can alter the course of a spontaneous genetic disease in mice. |
---|---|
ISSN: | 1757-4676 1757-4684 |
DOI: | 10.1002/emmm.201100171 |