Loading…

Quorum sensing control of phosphorus acquisition in Trichodesmium consortia

Colonies of the cyanobacterium Trichodesmium are abundant in the oligotrophic ocean, and through their ability to fix both CO 2 and N 2 , have pivotal roles in the cycling of carbon and nitrogen in these highly nutrient-depleted environments. Trichodesmium colonies host complex consortia of epibioti...

Full description

Saved in:
Bibliographic Details
Published in:The ISME Journal 2012-02, Vol.6 (2), p.422-429
Main Authors: Van Mooy, Benjamin A S, Hmelo, Laura R, Sofen, Laura E, Campagna, Shawn R, May, Amanda L, Dyhrman, Sonya T, Heithoff, Abigail, Webb, Eric A, Momper, Lily, Mincer, Tracy J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Colonies of the cyanobacterium Trichodesmium are abundant in the oligotrophic ocean, and through their ability to fix both CO 2 and N 2 , have pivotal roles in the cycling of carbon and nitrogen in these highly nutrient-depleted environments. Trichodesmium colonies host complex consortia of epibiotic heterotrophic bacteria, and yet, the regulation of nutrient acquisition by these epibionts is poorly understood. We present evidence that epibiotic bacteria in Trichodesmium consortia use quorum sensing (QS) to regulate the activity of alkaline phosphatases (APases), enzymes used by epibionts in the acquisition of phosphate from dissolved-organic phosphorus molecules. A class of QS molecules, acylated homoserine lactones (AHLs), were produced by cultivated epibionts, and adding these AHLs to wild Trichodesmium colonies collected at sea led to a consistent doubling of APase activity. By contrast, amendments of ( S )-4,5-dihydroxy-2,3-pentanedione (DPD)—the precursor to the autoinducer-2 (AI-2) family of universal interspecies signaling molecules—led to the attenuation of APase activity. In addition, colonies collected at sea were found by high performance liquid chromatography/mass spectrometry to contain both AHLs and AI-2. Both types of molecules turned over rapidly, an observation we ascribe to quorum quenching. Our results reveal a complex chemical interplay among epibionts using AHLs and AI-2 to control access to phosphate in dissolved-organic phosphorus.
ISSN:1751-7362
1751-7370
DOI:10.1038/ismej.2011.115