Loading…
Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA
TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p...
Saved in:
Published in: | Nucleic acids research 2012-02, Vol.40 (3), p.996-1008 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3 |
container_end_page | 1008 |
container_issue | 3 |
container_start_page | 996 |
container_title | Nucleic acids research |
container_volume | 40 |
creator | Spedale, Gianpiero Meddens, Claartje A. Koster, Maria J. E. Ko, Cheuk W. van Hooff, Sander R. Holstege, Frank C. P. Timmers, H. Th. Marc Pijnappel, W. W. M. Pim |
description | TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p or the NC2 complex. Recent evidence suggests that Mot1p, NC2 and TBP form a DNA-dependent protein complex. Here, we compare the functions of Mot1p and NC2βduring basal and activated transcription using the anchor-away technique for conditional nuclear depletion. Genome-wide expression analysis indicates that both proteins regulate a highly similar set of genes. Upregulated genes were enriched for SAGA occupancy, while downregulated genes preferred TFIID binding. Mot1p and NC2β depletion during heat shock resulted in failure to downregulate gene expression after initial activation, which was accompanied by increased TBP and RNA pol II promoter occupancies. Depletion of Mot1p or NC2β displayed preferential synthetic lethality with the TBP-interaction module of SAGA. Our results support the model that Mot1p and NC2β directly cooperate in vivo to regulate TBP function, and that they are involved in maintaining basal expression levels as well as in resetting gene expression after induction by stress. |
doi_str_mv | 10.1093/nar/gkr784 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3273795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkr784</oup_id><sourcerecordid>926884817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3</originalsourceid><addsrcrecordid>eNqNksFu1DAQhi0EokvhwgMgXxASItSOk9i-IK1WUCoVOFDOkeNMEtOsndoOK54KiQfhmXCaUtEL4mRp5vPnf-RB6CklrymR7MQqf9Jfei6Ke2hDWZVnhazy-2hDGCkzSgpxhB6F8JUQWtCyeIiOcip5xRnZoB8Xph8i1s5N4FU0zuIG4gHA4g8u0gkr2-KPu_zXT2ws9tDPY6Jsj3uwbg_ZwbSAo1c2aG-m5f6rRE0eQlhcrrvbxJ0bR3dYBAOoiMPg9GUyt7O-bi-vJTNEo1M1pkhr_WDigD9vT7eP0YNOjQGe3JzH6Mu7txe799n5p9Oz3fY80wWTMeOyY4S2RNJKMdYJynMucqEbyrXWsmlKwVrGZFeAJAKgasqqrBhQygTnXLFj9Gb1TnOzh1aDTXOM9eTNXvnvtVOmvtuxZqh7961mOWdclknw4kbg3dUMIdZ7EzSMo7Lg5lDLvBKiSMH-gyRcVHlRJfLlSmrvQvDQ3eahpF5WoU6rUK-rkOBnf09wi_75-wQ8XwE3T_8S_QaLY8Is</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920786246</pqid></control><display><type>article</type><title>Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA</title><source>Oxford University Press Open Access</source><source>PubMed Central</source><creator>Spedale, Gianpiero ; Meddens, Claartje A. ; Koster, Maria J. E. ; Ko, Cheuk W. ; van Hooff, Sander R. ; Holstege, Frank C. P. ; Timmers, H. Th. Marc ; Pijnappel, W. W. M. Pim</creator><creatorcontrib>Spedale, Gianpiero ; Meddens, Claartje A. ; Koster, Maria J. E. ; Ko, Cheuk W. ; van Hooff, Sander R. ; Holstege, Frank C. P. ; Timmers, H. Th. Marc ; Pijnappel, W. W. M. Pim</creatorcontrib><description>TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p or the NC2 complex. Recent evidence suggests that Mot1p, NC2 and TBP form a DNA-dependent protein complex. Here, we compare the functions of Mot1p and NC2βduring basal and activated transcription using the anchor-away technique for conditional nuclear depletion. Genome-wide expression analysis indicates that both proteins regulate a highly similar set of genes. Upregulated genes were enriched for SAGA occupancy, while downregulated genes preferred TFIID binding. Mot1p and NC2β depletion during heat shock resulted in failure to downregulate gene expression after initial activation, which was accompanied by increased TBP and RNA pol II promoter occupancies. Depletion of Mot1p or NC2β displayed preferential synthetic lethality with the TBP-interaction module of SAGA. Our results support the model that Mot1p and NC2β directly cooperate in vivo to regulate TBP function, and that they are involved in maintaining basal expression levels as well as in resetting gene expression after induction by stress.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkr784</identifier><identifier>PMID: 21976730</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; Cell Nucleus - metabolism ; Cooperation ; DNA-directed RNA polymerase ; Gene Expression Regulation, Fungal ; Gene Regulation, Chromatin and Epigenetics ; Genome, Fungal ; Heat shock ; Heat-Shock Proteins - metabolism ; Heat-Shock Response ; Lethality ; Promoter Regions, Genetic ; Promoters ; Recruitment ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; RNA ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Stress ; TATA-binding protein ; TATA-Binding Protein Associated Factors - genetics ; TATA-Binding Protein Associated Factors - metabolism ; TFIID protein ; Trans-Activators - genetics ; Transcription ; Transcription factors ; Transcription initiation ; Transcription, Genetic</subject><ispartof>Nucleic acids research, 2012-02, Vol.40 (3), p.996-1008</ispartof><rights>The Author(s) 2011. Published by Oxford University Press. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3</citedby><cites>FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273795/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273795/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21976730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spedale, Gianpiero</creatorcontrib><creatorcontrib>Meddens, Claartje A.</creatorcontrib><creatorcontrib>Koster, Maria J. E.</creatorcontrib><creatorcontrib>Ko, Cheuk W.</creatorcontrib><creatorcontrib>van Hooff, Sander R.</creatorcontrib><creatorcontrib>Holstege, Frank C. P.</creatorcontrib><creatorcontrib>Timmers, H. Th. Marc</creatorcontrib><creatorcontrib>Pijnappel, W. W. M. Pim</creatorcontrib><title>Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p or the NC2 complex. Recent evidence suggests that Mot1p, NC2 and TBP form a DNA-dependent protein complex. Here, we compare the functions of Mot1p and NC2βduring basal and activated transcription using the anchor-away technique for conditional nuclear depletion. Genome-wide expression analysis indicates that both proteins regulate a highly similar set of genes. Upregulated genes were enriched for SAGA occupancy, while downregulated genes preferred TFIID binding. Mot1p and NC2β depletion during heat shock resulted in failure to downregulate gene expression after initial activation, which was accompanied by increased TBP and RNA pol II promoter occupancies. Depletion of Mot1p or NC2β displayed preferential synthetic lethality with the TBP-interaction module of SAGA. Our results support the model that Mot1p and NC2β directly cooperate in vivo to regulate TBP function, and that they are involved in maintaining basal expression levels as well as in resetting gene expression after induction by stress.</description><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Cell Nucleus - metabolism</subject><subject>Cooperation</subject><subject>DNA-directed RNA polymerase</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene Regulation, Chromatin and Epigenetics</subject><subject>Genome, Fungal</subject><subject>Heat shock</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Heat-Shock Response</subject><subject>Lethality</subject><subject>Promoter Regions, Genetic</subject><subject>Promoters</subject><subject>Recruitment</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>RNA</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Stress</subject><subject>TATA-binding protein</subject><subject>TATA-Binding Protein Associated Factors - genetics</subject><subject>TATA-Binding Protein Associated Factors - metabolism</subject><subject>TFIID protein</subject><subject>Trans-Activators - genetics</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Transcription initiation</subject><subject>Transcription, Genetic</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNksFu1DAQhi0EokvhwgMgXxASItSOk9i-IK1WUCoVOFDOkeNMEtOsndoOK54KiQfhmXCaUtEL4mRp5vPnf-RB6CklrymR7MQqf9Jfei6Ke2hDWZVnhazy-2hDGCkzSgpxhB6F8JUQWtCyeIiOcip5xRnZoB8Xph8i1s5N4FU0zuIG4gHA4g8u0gkr2-KPu_zXT2ws9tDPY6Jsj3uwbg_ZwbSAo1c2aG-m5f6rRE0eQlhcrrvbxJ0bR3dYBAOoiMPg9GUyt7O-bi-vJTNEo1M1pkhr_WDigD9vT7eP0YNOjQGe3JzH6Mu7txe799n5p9Oz3fY80wWTMeOyY4S2RNJKMdYJynMucqEbyrXWsmlKwVrGZFeAJAKgasqqrBhQygTnXLFj9Gb1TnOzh1aDTXOM9eTNXvnvtVOmvtuxZqh7961mOWdclknw4kbg3dUMIdZ7EzSMo7Lg5lDLvBKiSMH-gyRcVHlRJfLlSmrvQvDQ3eahpF5WoU6rUK-rkOBnf09wi_75-wQ8XwE3T_8S_QaLY8Is</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Spedale, Gianpiero</creator><creator>Meddens, Claartje A.</creator><creator>Koster, Maria J. E.</creator><creator>Ko, Cheuk W.</creator><creator>van Hooff, Sander R.</creator><creator>Holstege, Frank C. P.</creator><creator>Timmers, H. Th. Marc</creator><creator>Pijnappel, W. W. M. Pim</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120201</creationdate><title>Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA</title><author>Spedale, Gianpiero ; Meddens, Claartje A. ; Koster, Maria J. E. ; Ko, Cheuk W. ; van Hooff, Sander R. ; Holstege, Frank C. P. ; Timmers, H. Th. Marc ; Pijnappel, W. W. M. Pim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Cell Nucleus - metabolism</topic><topic>Cooperation</topic><topic>DNA-directed RNA polymerase</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene Regulation, Chromatin and Epigenetics</topic><topic>Genome, Fungal</topic><topic>Heat shock</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Heat-Shock Response</topic><topic>Lethality</topic><topic>Promoter Regions, Genetic</topic><topic>Promoters</topic><topic>Recruitment</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>RNA</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Stress</topic><topic>TATA-binding protein</topic><topic>TATA-Binding Protein Associated Factors - genetics</topic><topic>TATA-Binding Protein Associated Factors - metabolism</topic><topic>TFIID protein</topic><topic>Trans-Activators - genetics</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Transcription initiation</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spedale, Gianpiero</creatorcontrib><creatorcontrib>Meddens, Claartje A.</creatorcontrib><creatorcontrib>Koster, Maria J. E.</creatorcontrib><creatorcontrib>Ko, Cheuk W.</creatorcontrib><creatorcontrib>van Hooff, Sander R.</creatorcontrib><creatorcontrib>Holstege, Frank C. P.</creatorcontrib><creatorcontrib>Timmers, H. Th. Marc</creatorcontrib><creatorcontrib>Pijnappel, W. W. M. Pim</creatorcontrib><collection>Oxford University Press Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spedale, Gianpiero</au><au>Meddens, Claartje A.</au><au>Koster, Maria J. E.</au><au>Ko, Cheuk W.</au><au>van Hooff, Sander R.</au><au>Holstege, Frank C. P.</au><au>Timmers, H. Th. Marc</au><au>Pijnappel, W. W. M. Pim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>40</volume><issue>3</issue><spage>996</spage><epage>1008</epage><pages>996-1008</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p or the NC2 complex. Recent evidence suggests that Mot1p, NC2 and TBP form a DNA-dependent protein complex. Here, we compare the functions of Mot1p and NC2βduring basal and activated transcription using the anchor-away technique for conditional nuclear depletion. Genome-wide expression analysis indicates that both proteins regulate a highly similar set of genes. Upregulated genes were enriched for SAGA occupancy, while downregulated genes preferred TFIID binding. Mot1p and NC2β depletion during heat shock resulted in failure to downregulate gene expression after initial activation, which was accompanied by increased TBP and RNA pol II promoter occupancies. Depletion of Mot1p or NC2β displayed preferential synthetic lethality with the TBP-interaction module of SAGA. Our results support the model that Mot1p and NC2β directly cooperate in vivo to regulate TBP function, and that they are involved in maintaining basal expression levels as well as in resetting gene expression after induction by stress.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>21976730</pmid><doi>10.1093/nar/gkr784</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2012-02, Vol.40 (3), p.996-1008 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3273795 |
source | Oxford University Press Open Access; PubMed Central |
subjects | Adenosine Triphosphatases - genetics Adenosine Triphosphatases - metabolism Cell Nucleus - metabolism Cooperation DNA-directed RNA polymerase Gene Expression Regulation, Fungal Gene Regulation, Chromatin and Epigenetics Genome, Fungal Heat shock Heat-Shock Proteins - metabolism Heat-Shock Response Lethality Promoter Regions, Genetic Promoters Recruitment Repressor Proteins - genetics Repressor Proteins - metabolism RNA RNA Polymerase II - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Stress TATA-binding protein TATA-Binding Protein Associated Factors - genetics TATA-Binding Protein Associated Factors - metabolism TFIID protein Trans-Activators - genetics Transcription Transcription factors Transcription initiation Transcription, Genetic |
title | Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20cooperation%20between%20Mot1p%20and%20NC2%CE%B2%20in%20regulating%20genome-wide%20transcription,%20repression%20of%20transcription%20following%20heat%20shock%20induction%20and%20genetic%20interaction%20with%20SAGA&rft.jtitle=Nucleic%20acids%20research&rft.au=Spedale,%20Gianpiero&rft.date=2012-02-01&rft.volume=40&rft.issue=3&rft.spage=996&rft.epage=1008&rft.pages=996-1008&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkr784&rft_dat=%3Cproquest_pubme%3E926884817%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920786246&rft_id=info:pmid/21976730&rft_oup_id=10.1093/nar/gkr784&rfr_iscdi=true |