Loading…

Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA

TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2012-02, Vol.40 (3), p.996-1008
Main Authors: Spedale, Gianpiero, Meddens, Claartje A., Koster, Maria J. E., Ko, Cheuk W., van Hooff, Sander R., Holstege, Frank C. P., Timmers, H. Th. Marc, Pijnappel, W. W. M. Pim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3
cites cdi_FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3
container_end_page 1008
container_issue 3
container_start_page 996
container_title Nucleic acids research
container_volume 40
creator Spedale, Gianpiero
Meddens, Claartje A.
Koster, Maria J. E.
Ko, Cheuk W.
van Hooff, Sander R.
Holstege, Frank C. P.
Timmers, H. Th. Marc
Pijnappel, W. W. M. Pim
description TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p or the NC2 complex. Recent evidence suggests that Mot1p, NC2 and TBP form a DNA-dependent protein complex. Here, we compare the functions of Mot1p and NC2βduring basal and activated transcription using the anchor-away technique for conditional nuclear depletion. Genome-wide expression analysis indicates that both proteins regulate a highly similar set of genes. Upregulated genes were enriched for SAGA occupancy, while downregulated genes preferred TFIID binding. Mot1p and NC2β depletion during heat shock resulted in failure to downregulate gene expression after initial activation, which was accompanied by increased TBP and RNA pol II promoter occupancies. Depletion of Mot1p or NC2β displayed preferential synthetic lethality with the TBP-interaction module of SAGA. Our results support the model that Mot1p and NC2β directly cooperate in vivo to regulate TBP function, and that they are involved in maintaining basal expression levels as well as in resetting gene expression after induction by stress.
doi_str_mv 10.1093/nar/gkr784
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3273795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkr784</oup_id><sourcerecordid>926884817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3</originalsourceid><addsrcrecordid>eNqNksFu1DAQhi0EokvhwgMgXxASItSOk9i-IK1WUCoVOFDOkeNMEtOsndoOK54KiQfhmXCaUtEL4mRp5vPnf-RB6CklrymR7MQqf9Jfei6Ke2hDWZVnhazy-2hDGCkzSgpxhB6F8JUQWtCyeIiOcip5xRnZoB8Xph8i1s5N4FU0zuIG4gHA4g8u0gkr2-KPu_zXT2ws9tDPY6Jsj3uwbg_ZwbSAo1c2aG-m5f6rRE0eQlhcrrvbxJ0bR3dYBAOoiMPg9GUyt7O-bi-vJTNEo1M1pkhr_WDigD9vT7eP0YNOjQGe3JzH6Mu7txe799n5p9Oz3fY80wWTMeOyY4S2RNJKMdYJynMucqEbyrXWsmlKwVrGZFeAJAKgasqqrBhQygTnXLFj9Gb1TnOzh1aDTXOM9eTNXvnvtVOmvtuxZqh7961mOWdclknw4kbg3dUMIdZ7EzSMo7Lg5lDLvBKiSMH-gyRcVHlRJfLlSmrvQvDQ3eahpF5WoU6rUK-rkOBnf09wi_75-wQ8XwE3T_8S_QaLY8Is</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920786246</pqid></control><display><type>article</type><title>Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA</title><source>Oxford University Press Open Access</source><source>PubMed Central</source><creator>Spedale, Gianpiero ; Meddens, Claartje A. ; Koster, Maria J. E. ; Ko, Cheuk W. ; van Hooff, Sander R. ; Holstege, Frank C. P. ; Timmers, H. Th. Marc ; Pijnappel, W. W. M. Pim</creator><creatorcontrib>Spedale, Gianpiero ; Meddens, Claartje A. ; Koster, Maria J. E. ; Ko, Cheuk W. ; van Hooff, Sander R. ; Holstege, Frank C. P. ; Timmers, H. Th. Marc ; Pijnappel, W. W. M. Pim</creatorcontrib><description>TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p or the NC2 complex. Recent evidence suggests that Mot1p, NC2 and TBP form a DNA-dependent protein complex. Here, we compare the functions of Mot1p and NC2βduring basal and activated transcription using the anchor-away technique for conditional nuclear depletion. Genome-wide expression analysis indicates that both proteins regulate a highly similar set of genes. Upregulated genes were enriched for SAGA occupancy, while downregulated genes preferred TFIID binding. Mot1p and NC2β depletion during heat shock resulted in failure to downregulate gene expression after initial activation, which was accompanied by increased TBP and RNA pol II promoter occupancies. Depletion of Mot1p or NC2β displayed preferential synthetic lethality with the TBP-interaction module of SAGA. Our results support the model that Mot1p and NC2β directly cooperate in vivo to regulate TBP function, and that they are involved in maintaining basal expression levels as well as in resetting gene expression after induction by stress.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkr784</identifier><identifier>PMID: 21976730</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; Cell Nucleus - metabolism ; Cooperation ; DNA-directed RNA polymerase ; Gene Expression Regulation, Fungal ; Gene Regulation, Chromatin and Epigenetics ; Genome, Fungal ; Heat shock ; Heat-Shock Proteins - metabolism ; Heat-Shock Response ; Lethality ; Promoter Regions, Genetic ; Promoters ; Recruitment ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; RNA ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Stress ; TATA-binding protein ; TATA-Binding Protein Associated Factors - genetics ; TATA-Binding Protein Associated Factors - metabolism ; TFIID protein ; Trans-Activators - genetics ; Transcription ; Transcription factors ; Transcription initiation ; Transcription, Genetic</subject><ispartof>Nucleic acids research, 2012-02, Vol.40 (3), p.996-1008</ispartof><rights>The Author(s) 2011. Published by Oxford University Press. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3</citedby><cites>FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273795/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273795/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21976730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spedale, Gianpiero</creatorcontrib><creatorcontrib>Meddens, Claartje A.</creatorcontrib><creatorcontrib>Koster, Maria J. E.</creatorcontrib><creatorcontrib>Ko, Cheuk W.</creatorcontrib><creatorcontrib>van Hooff, Sander R.</creatorcontrib><creatorcontrib>Holstege, Frank C. P.</creatorcontrib><creatorcontrib>Timmers, H. Th. Marc</creatorcontrib><creatorcontrib>Pijnappel, W. W. M. Pim</creatorcontrib><title>Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p or the NC2 complex. Recent evidence suggests that Mot1p, NC2 and TBP form a DNA-dependent protein complex. Here, we compare the functions of Mot1p and NC2βduring basal and activated transcription using the anchor-away technique for conditional nuclear depletion. Genome-wide expression analysis indicates that both proteins regulate a highly similar set of genes. Upregulated genes were enriched for SAGA occupancy, while downregulated genes preferred TFIID binding. Mot1p and NC2β depletion during heat shock resulted in failure to downregulate gene expression after initial activation, which was accompanied by increased TBP and RNA pol II promoter occupancies. Depletion of Mot1p or NC2β displayed preferential synthetic lethality with the TBP-interaction module of SAGA. Our results support the model that Mot1p and NC2β directly cooperate in vivo to regulate TBP function, and that they are involved in maintaining basal expression levels as well as in resetting gene expression after induction by stress.</description><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Cell Nucleus - metabolism</subject><subject>Cooperation</subject><subject>DNA-directed RNA polymerase</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene Regulation, Chromatin and Epigenetics</subject><subject>Genome, Fungal</subject><subject>Heat shock</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Heat-Shock Response</subject><subject>Lethality</subject><subject>Promoter Regions, Genetic</subject><subject>Promoters</subject><subject>Recruitment</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>RNA</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Stress</subject><subject>TATA-binding protein</subject><subject>TATA-Binding Protein Associated Factors - genetics</subject><subject>TATA-Binding Protein Associated Factors - metabolism</subject><subject>TFIID protein</subject><subject>Trans-Activators - genetics</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Transcription initiation</subject><subject>Transcription, Genetic</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNksFu1DAQhi0EokvhwgMgXxASItSOk9i-IK1WUCoVOFDOkeNMEtOsndoOK54KiQfhmXCaUtEL4mRp5vPnf-RB6CklrymR7MQqf9Jfei6Ke2hDWZVnhazy-2hDGCkzSgpxhB6F8JUQWtCyeIiOcip5xRnZoB8Xph8i1s5N4FU0zuIG4gHA4g8u0gkr2-KPu_zXT2ws9tDPY6Jsj3uwbg_ZwbSAo1c2aG-m5f6rRE0eQlhcrrvbxJ0bR3dYBAOoiMPg9GUyt7O-bi-vJTNEo1M1pkhr_WDigD9vT7eP0YNOjQGe3JzH6Mu7txe799n5p9Oz3fY80wWTMeOyY4S2RNJKMdYJynMucqEbyrXWsmlKwVrGZFeAJAKgasqqrBhQygTnXLFj9Gb1TnOzh1aDTXOM9eTNXvnvtVOmvtuxZqh7961mOWdclknw4kbg3dUMIdZ7EzSMo7Lg5lDLvBKiSMH-gyRcVHlRJfLlSmrvQvDQ3eahpF5WoU6rUK-rkOBnf09wi_75-wQ8XwE3T_8S_QaLY8Is</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Spedale, Gianpiero</creator><creator>Meddens, Claartje A.</creator><creator>Koster, Maria J. E.</creator><creator>Ko, Cheuk W.</creator><creator>van Hooff, Sander R.</creator><creator>Holstege, Frank C. P.</creator><creator>Timmers, H. Th. Marc</creator><creator>Pijnappel, W. W. M. Pim</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120201</creationdate><title>Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA</title><author>Spedale, Gianpiero ; Meddens, Claartje A. ; Koster, Maria J. E. ; Ko, Cheuk W. ; van Hooff, Sander R. ; Holstege, Frank C. P. ; Timmers, H. Th. Marc ; Pijnappel, W. W. M. Pim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Cell Nucleus - metabolism</topic><topic>Cooperation</topic><topic>DNA-directed RNA polymerase</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene Regulation, Chromatin and Epigenetics</topic><topic>Genome, Fungal</topic><topic>Heat shock</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Heat-Shock Response</topic><topic>Lethality</topic><topic>Promoter Regions, Genetic</topic><topic>Promoters</topic><topic>Recruitment</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>RNA</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Stress</topic><topic>TATA-binding protein</topic><topic>TATA-Binding Protein Associated Factors - genetics</topic><topic>TATA-Binding Protein Associated Factors - metabolism</topic><topic>TFIID protein</topic><topic>Trans-Activators - genetics</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Transcription initiation</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spedale, Gianpiero</creatorcontrib><creatorcontrib>Meddens, Claartje A.</creatorcontrib><creatorcontrib>Koster, Maria J. E.</creatorcontrib><creatorcontrib>Ko, Cheuk W.</creatorcontrib><creatorcontrib>van Hooff, Sander R.</creatorcontrib><creatorcontrib>Holstege, Frank C. P.</creatorcontrib><creatorcontrib>Timmers, H. Th. Marc</creatorcontrib><creatorcontrib>Pijnappel, W. W. M. Pim</creatorcontrib><collection>Oxford University Press Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spedale, Gianpiero</au><au>Meddens, Claartje A.</au><au>Koster, Maria J. E.</au><au>Ko, Cheuk W.</au><au>van Hooff, Sander R.</au><au>Holstege, Frank C. P.</au><au>Timmers, H. Th. Marc</au><au>Pijnappel, W. W. M. Pim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>40</volume><issue>3</issue><spage>996</spage><epage>1008</epage><pages>996-1008</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p or the NC2 complex. Recent evidence suggests that Mot1p, NC2 and TBP form a DNA-dependent protein complex. Here, we compare the functions of Mot1p and NC2βduring basal and activated transcription using the anchor-away technique for conditional nuclear depletion. Genome-wide expression analysis indicates that both proteins regulate a highly similar set of genes. Upregulated genes were enriched for SAGA occupancy, while downregulated genes preferred TFIID binding. Mot1p and NC2β depletion during heat shock resulted in failure to downregulate gene expression after initial activation, which was accompanied by increased TBP and RNA pol II promoter occupancies. Depletion of Mot1p or NC2β displayed preferential synthetic lethality with the TBP-interaction module of SAGA. Our results support the model that Mot1p and NC2β directly cooperate in vivo to regulate TBP function, and that they are involved in maintaining basal expression levels as well as in resetting gene expression after induction by stress.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>21976730</pmid><doi>10.1093/nar/gkr784</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2012-02, Vol.40 (3), p.996-1008
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3273795
source Oxford University Press Open Access; PubMed Central
subjects Adenosine Triphosphatases - genetics
Adenosine Triphosphatases - metabolism
Cell Nucleus - metabolism
Cooperation
DNA-directed RNA polymerase
Gene Expression Regulation, Fungal
Gene Regulation, Chromatin and Epigenetics
Genome, Fungal
Heat shock
Heat-Shock Proteins - metabolism
Heat-Shock Response
Lethality
Promoter Regions, Genetic
Promoters
Recruitment
Repressor Proteins - genetics
Repressor Proteins - metabolism
RNA
RNA Polymerase II - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Stress
TATA-binding protein
TATA-Binding Protein Associated Factors - genetics
TATA-Binding Protein Associated Factors - metabolism
TFIID protein
Trans-Activators - genetics
Transcription
Transcription factors
Transcription initiation
Transcription, Genetic
title Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20cooperation%20between%20Mot1p%20and%20NC2%CE%B2%20in%20regulating%20genome-wide%20transcription,%20repression%20of%20transcription%20following%20heat%20shock%20induction%20and%20genetic%20interaction%20with%20SAGA&rft.jtitle=Nucleic%20acids%20research&rft.au=Spedale,%20Gianpiero&rft.date=2012-02-01&rft.volume=40&rft.issue=3&rft.spage=996&rft.epage=1008&rft.pages=996-1008&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkr784&rft_dat=%3Cproquest_pubme%3E926884817%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-79f301d0916a33f81727828cb17ccc9bb583d339f4e908ee6b56563e1138777a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920786246&rft_id=info:pmid/21976730&rft_oup_id=10.1093/nar/gkr784&rfr_iscdi=true