Loading…

Fermentative production of isobutene

Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chem...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2012-02, Vol.93 (4), p.1377-1387
Main Authors: van Leeuwen, Bianca N. M., van der Wulp, Albertus M., Duijnstee, Isabelle, van Maris, Antonius J. A., Straathof, Adrie J. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c537t-c9afcee16b46357350c6557e4580ecd356f1a099fa421daee456bc2b74e605823
cites cdi_FETCH-LOGICAL-c537t-c9afcee16b46357350c6557e4580ecd356f1a099fa421daee456bc2b74e605823
container_end_page 1387
container_issue 4
container_start_page 1377
container_title Applied microbiology and biotechnology
container_volume 93
creator van Leeuwen, Bianca N. M.
van der Wulp, Albertus M.
Duijnstee, Isabelle
van Maris, Antonius J. A.
Straathof, Adrie J. J.
description Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO 2 + 2H 2 O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO 2 . The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 € kg −1 , which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock.
doi_str_mv 10.1007/s00253-011-3853-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3275743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>921147268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-c9afcee16b46357350c6557e4580ecd356f1a099fa421daee456bc2b74e605823</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMotlZ_gBspIrgavXnPbAQRq0LBja5DJr1Tp7STmswI_ntTWusDxFUC57sn5-YQckzhggLoywjAJM-A0ozn6aJ3SJ8KzjJQVOySPlAtMy2LvEcOYpwBUJYrtU96jDEuJFd9cjbCsMCmtW39hsNl8JPOtbVvhr4a1tGXXYsNHpK9ys4jHm3OAXke3T7d3Gfjx7uHm-tx5iTXbeYKWzlEqkqhuNRcglNSahQyB3QTLlVFLRRFZQWjE4tJUKVjpRaoQOaMD8jV2nfZlQucuJQr2LlZhnphw7vxtjY_laZ-MVP_ZjjTUgueDM43BsG_dhhbs6ijw_ncNui7aAqZkuUg5f8ko1RopvJEnv4iZ74LTfqHBAHXjOcriK4hF3yMAattaApm1ZVZd2VSV2bVldFp5uT7ttuJz3ISwNZATFIzxfD18t-uH-mfngU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920372388</pqid></control><display><type>article</type><title>Fermentative production of isobutene</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><creator>van Leeuwen, Bianca N. M. ; van der Wulp, Albertus M. ; Duijnstee, Isabelle ; van Maris, Antonius J. A. ; Straathof, Adrie J. J.</creator><creatorcontrib>van Leeuwen, Bianca N. M. ; van der Wulp, Albertus M. ; Duijnstee, Isabelle ; van Maris, Antonius J. A. ; Straathof, Adrie J. J.</creatorcontrib><description>Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO 2 + 2H 2 O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO 2 . The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 € kg −1 , which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-011-3853-7</identifier><identifier>PMID: 22234536</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Alkenes - metabolism ; Anaerobiosis ; Analysis ; Biomedical and Life Sciences ; Biotechnology ; Biotechnology - methods ; Carbon dioxide ; Chemicals ; Cost assessments ; Costs ; Cytochrome ; Dehydration ; Enzymes ; Fermentation ; Glucose - metabolism ; Life Sciences ; Metabolic Engineering - methods ; Metabolism ; Metabolites ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Mini-Review ; Oxidation ; Petrochemicals ; Polymerization ; Production costs ; Raw materials ; Studies ; Toxicity</subject><ispartof>Applied microbiology and biotechnology, 2012-02, Vol.93 (4), p.1377-1387</ispartof><rights>The Author(s) 2012</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-c9afcee16b46357350c6557e4580ecd356f1a099fa421daee456bc2b74e605823</citedby><cites>FETCH-LOGICAL-c537t-c9afcee16b46357350c6557e4580ecd356f1a099fa421daee456bc2b74e605823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/920372388/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/920372388?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22234536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Leeuwen, Bianca N. M.</creatorcontrib><creatorcontrib>van der Wulp, Albertus M.</creatorcontrib><creatorcontrib>Duijnstee, Isabelle</creatorcontrib><creatorcontrib>van Maris, Antonius J. A.</creatorcontrib><creatorcontrib>Straathof, Adrie J. J.</creatorcontrib><title>Fermentative production of isobutene</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO 2 + 2H 2 O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO 2 . The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 € kg −1 , which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock.</description><subject>Alkenes - metabolism</subject><subject>Anaerobiosis</subject><subject>Analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Carbon dioxide</subject><subject>Chemicals</subject><subject>Cost assessments</subject><subject>Costs</subject><subject>Cytochrome</subject><subject>Dehydration</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Glucose - metabolism</subject><subject>Life Sciences</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mini-Review</subject><subject>Oxidation</subject><subject>Petrochemicals</subject><subject>Polymerization</subject><subject>Production costs</subject><subject>Raw materials</subject><subject>Studies</subject><subject>Toxicity</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkUtLAzEUhYMotlZ_gBspIrgavXnPbAQRq0LBja5DJr1Tp7STmswI_ntTWusDxFUC57sn5-YQckzhggLoywjAJM-A0ozn6aJ3SJ8KzjJQVOySPlAtMy2LvEcOYpwBUJYrtU96jDEuJFd9cjbCsMCmtW39hsNl8JPOtbVvhr4a1tGXXYsNHpK9ys4jHm3OAXke3T7d3Gfjx7uHm-tx5iTXbeYKWzlEqkqhuNRcglNSahQyB3QTLlVFLRRFZQWjE4tJUKVjpRaoQOaMD8jV2nfZlQucuJQr2LlZhnphw7vxtjY_laZ-MVP_ZjjTUgueDM43BsG_dhhbs6ijw_ncNui7aAqZkuUg5f8ko1RopvJEnv4iZ74LTfqHBAHXjOcriK4hF3yMAattaApm1ZVZd2VSV2bVldFp5uT7ttuJz3ISwNZATFIzxfD18t-uH-mfngU</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>van Leeuwen, Bianca N. M.</creator><creator>van der Wulp, Albertus M.</creator><creator>Duijnstee, Isabelle</creator><creator>van Maris, Antonius J. A.</creator><creator>Straathof, Adrie J. J.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20120201</creationdate><title>Fermentative production of isobutene</title><author>van Leeuwen, Bianca N. M. ; van der Wulp, Albertus M. ; Duijnstee, Isabelle ; van Maris, Antonius J. A. ; Straathof, Adrie J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-c9afcee16b46357350c6557e4580ecd356f1a099fa421daee456bc2b74e605823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alkenes - metabolism</topic><topic>Anaerobiosis</topic><topic>Analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Carbon dioxide</topic><topic>Chemicals</topic><topic>Cost assessments</topic><topic>Costs</topic><topic>Cytochrome</topic><topic>Dehydration</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Glucose - metabolism</topic><topic>Life Sciences</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mini-Review</topic><topic>Oxidation</topic><topic>Petrochemicals</topic><topic>Polymerization</topic><topic>Production costs</topic><topic>Raw materials</topic><topic>Studies</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Leeuwen, Bianca N. M.</creatorcontrib><creatorcontrib>van der Wulp, Albertus M.</creatorcontrib><creatorcontrib>Duijnstee, Isabelle</creatorcontrib><creatorcontrib>van Maris, Antonius J. A.</creatorcontrib><creatorcontrib>Straathof, Adrie J. J.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Leeuwen, Bianca N. M.</au><au>van der Wulp, Albertus M.</au><au>Duijnstee, Isabelle</au><au>van Maris, Antonius J. A.</au><au>Straathof, Adrie J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermentative production of isobutene</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>93</volume><issue>4</issue><spage>1377</spage><epage>1387</epage><pages>1377-1387</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO 2 + 2H 2 O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO 2 . The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 € kg −1 , which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22234536</pmid><doi>10.1007/s00253-011-3853-7</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2012-02, Vol.93 (4), p.1377-1387
issn 0175-7598
1432-0614
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3275743
source ABI/INFORM Global (ProQuest); Springer Link
subjects Alkenes - metabolism
Anaerobiosis
Analysis
Biomedical and Life Sciences
Biotechnology
Biotechnology - methods
Carbon dioxide
Chemicals
Cost assessments
Costs
Cytochrome
Dehydration
Enzymes
Fermentation
Glucose - metabolism
Life Sciences
Metabolic Engineering - methods
Metabolism
Metabolites
Microbial Genetics and Genomics
Microbiology
Microorganisms
Mini-Review
Oxidation
Petrochemicals
Polymerization
Production costs
Raw materials
Studies
Toxicity
title Fermentative production of isobutene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermentative%20production%20of%20isobutene&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=van%20Leeuwen,%20Bianca%20N.%20M.&rft.date=2012-02-01&rft.volume=93&rft.issue=4&rft.spage=1377&rft.epage=1387&rft.pages=1377-1387&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-011-3853-7&rft_dat=%3Cproquest_pubme%3E921147268%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c537t-c9afcee16b46357350c6557e4580ecd356f1a099fa421daee456bc2b74e605823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920372388&rft_id=info:pmid/22234536&rfr_iscdi=true