Loading…
T cell- but not tumor cell-produced TGF-β1 promotes the development of spontaneous mammary cancer
During their development, tumors acquire multiple capabilities that enable them to proliferate, disseminate and evade immunosurveillance. A putative mechanism is through the production of the cytokine TGF-β1. We showed in our recent studies that T cell-produced TGF-β1 inhibits antitumor T cell respo...
Saved in:
Published in: | Oncotarget 2011-12, Vol.2 (12), p.1339-1351 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | During their development, tumors acquire multiple capabilities that enable them to proliferate, disseminate and evade immunosurveillance. A putative mechanism is through the production of the cytokine TGF-β1. We showed in our recent studies that T cell-produced TGF-β1 inhibits antitumor T cell responses to foster tumor growth raising the question of the precise function of TGF-β1 produced by tumor cells in tumor development. Here, using a transgenic model of mammary cancer, we report that deletion of TGF-β1 from tumor cells did not protect mice from tumor development. However, ablation of TGF-β1 from T cells significantly inhibited mammary tumor growth. Additionally, absence of TGF-β1 in T cells prevented tumors from advancing to higher pathological grades and further suppressed secondary tumor development in the lungs. These findings reveal T cells but not tumor cells as a critical source of TGF-β1 that promotes tumor development. |
---|---|
ISSN: | 1949-2553 1949-2553 |
DOI: | 10.18632/oncotarget.403 |