Loading…
Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness
Among the several linkage disequilibrium measures known to capture different features of the non-independence between alleles at different loci, the most commonly used for diallelic loci is the r 2 measure. In the present study, we tackled the problem of the bias of r 2 estimate, which results from...
Saved in:
Published in: | Heredity 2012-03, Vol.108 (3), p.285-291 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3 |
container_end_page | 291 |
container_issue | 3 |
container_start_page | 285 |
container_title | Heredity |
container_volume | 108 |
creator | Mangin, B Siberchicot, A Nicolas, S Doligez, A This, P Cierco-Ayrolles, C |
description | Among the several linkage disequilibrium measures known to capture different features of the non-independence between alleles at different loci, the most commonly used for diallelic loci is the
r
2
measure. In the present study, we tackled the problem of the bias of
r
2
estimate, which results from the sample structure and/or the relatedness between genotyped individuals. We derived two novel linkage disequilibrium measures for diallelic loci that are both extensions of the usual
r
2
measure. The first one,
r
S
2
, uses the population structure matrix, which consists of information about the origins of each individual and the admixture proportions of each individual genome. The second one,
r
V
2
, includes the kinship matrix into the calculation. These two corrections can be applied together in order to correct for both biases and are defined either on phased or unphased genotypes.
We proved that these novel measures are linked to the power of association tests under the mixed linear model including structure and kinship corrections. We validated them on simulated data and applied them to real data sets collected on
Vitis vinifera
plants. Our results clearly showed the usefulness of the two corrected
r
2
measures, which actually captured ‘true’ linkage disequilibrium unlike the usual
r
2
measure. |
doi_str_mv | 10.1038/hdy.2011.73 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3282397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>968174790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3</originalsourceid><addsrcrecordid>eNqFkstrFEEQxhtRzBo9eZfGi4jO2o-ZflwCISRGWPSi4K3pmanZ7XV2etOPhfz39rAxahA8FV31q6-qiw-hl5QsKeHqw6a_XTJC6VLyR2hBuWgq1tTkMVoQQlVFhPx-gp7FuCWEcMn0U3TCqJJKK7FA28_-ACPegY05QMR-wKObftg14N5FuMludG1weYfTxibc-RCgS-UBuHU24j4DTh7v_T6PNjk_4ZhC7lIRw3bqcYCShn6CGJ-jJ4MdI7y4i6fo29Xl14vravXl46eL81XVNZSkSoJoFRWd7mldq6ZR7cBqMWihidWN4uWrmmluRTvYQYheKGIJA0JqADU0PT9FZ0fdfW530HcwpWBHsw9uZ8Ot8daZvyuT25i1PxjOFONaFoG3R4HNg7br85WZc4QyIaXQB1rYN3fDgr_JEJPZudjBONoJfI5GC0VlLTX5P8mopLpWs-brB-TW5zCVm81QQxlT85LvjlAXfIwBhvtNKTGzL0zxhZl9YSQv9Ks_b3LP_jJCAd4fgVhK0xrC75n_0vsJ6eHDCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921512287</pqid></control><display><type>article</type><title>Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness</title><source>PubMed (Medline)</source><source>Nature Journals Online</source><creator>Mangin, B ; Siberchicot, A ; Nicolas, S ; Doligez, A ; This, P ; Cierco-Ayrolles, C</creator><creatorcontrib>Mangin, B ; Siberchicot, A ; Nicolas, S ; Doligez, A ; This, P ; Cierco-Ayrolles, C</creatorcontrib><description>Among the several linkage disequilibrium measures known to capture different features of the non-independence between alleles at different loci, the most commonly used for diallelic loci is the
r
2
measure. In the present study, we tackled the problem of the bias of
r
2
estimate, which results from the sample structure and/or the relatedness between genotyped individuals. We derived two novel linkage disequilibrium measures for diallelic loci that are both extensions of the usual
r
2
measure. The first one,
r
S
2
, uses the population structure matrix, which consists of information about the origins of each individual and the admixture proportions of each individual genome. The second one,
r
V
2
, includes the kinship matrix into the calculation. These two corrections can be applied together in order to correct for both biases and are defined either on phased or unphased genotypes.
We proved that these novel measures are linked to the power of association tests under the mixed linear model including structure and kinship corrections. We validated them on simulated data and applied them to real data sets collected on
Vitis vinifera
plants. Our results clearly showed the usefulness of the two corrected
r
2
measures, which actually captured ‘true’ linkage disequilibrium unlike the usual
r
2
measure.</description><identifier>ISSN: 0018-067X</identifier><identifier>EISSN: 1365-2540</identifier><identifier>EISSN: 0018-067X</identifier><identifier>DOI: 10.1038/hdy.2011.73</identifier><identifier>PMID: 21878986</identifier><identifier>CODEN: HDTYAT</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alleles ; Bias ; Biomedical and Life Sciences ; Biomedicine ; Computer Simulation ; Cytogenetics ; Disequilibrium ; Ecology ; Evolutionary Biology ; Gene loci ; Genetics, Population ; Genotype ; Genotypes ; Human Genetics ; Human health and pathology ; Life Sciences ; Linkage Disequilibrium ; Models, Genetic ; Original ; original-article ; Plant Genetics and Genomics ; Polymorphism, Single Nucleotide ; Population structure ; Reproducibility of Results ; Vitis - genetics ; Vitis vinifera</subject><ispartof>Heredity, 2012-03, Vol.108 (3), p.285-291</ispartof><rights>The Genetics Society 2012</rights><rights>Copyright Nature Publishing Group Mar 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2012 The Genetics Society 2012 The Genetics Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3</citedby><cites>FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3</cites><orcidid>0000-0002-3159-5903 ; 0000-0002-3024-5813 ; 0000-0002-7638-8318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282397/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282397/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21878986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01267769$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mangin, B</creatorcontrib><creatorcontrib>Siberchicot, A</creatorcontrib><creatorcontrib>Nicolas, S</creatorcontrib><creatorcontrib>Doligez, A</creatorcontrib><creatorcontrib>This, P</creatorcontrib><creatorcontrib>Cierco-Ayrolles, C</creatorcontrib><title>Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness</title><title>Heredity</title><addtitle>Heredity</addtitle><addtitle>Heredity (Edinb)</addtitle><description>Among the several linkage disequilibrium measures known to capture different features of the non-independence between alleles at different loci, the most commonly used for diallelic loci is the
r
2
measure. In the present study, we tackled the problem of the bias of
r
2
estimate, which results from the sample structure and/or the relatedness between genotyped individuals. We derived two novel linkage disequilibrium measures for diallelic loci that are both extensions of the usual
r
2
measure. The first one,
r
S
2
, uses the population structure matrix, which consists of information about the origins of each individual and the admixture proportions of each individual genome. The second one,
r
V
2
, includes the kinship matrix into the calculation. These two corrections can be applied together in order to correct for both biases and are defined either on phased or unphased genotypes.
We proved that these novel measures are linked to the power of association tests under the mixed linear model including structure and kinship corrections. We validated them on simulated data and applied them to real data sets collected on
Vitis vinifera
plants. Our results clearly showed the usefulness of the two corrected
r
2
measures, which actually captured ‘true’ linkage disequilibrium unlike the usual
r
2
measure.</description><subject>Alleles</subject><subject>Bias</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Computer Simulation</subject><subject>Cytogenetics</subject><subject>Disequilibrium</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Gene loci</subject><subject>Genetics, Population</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Human Genetics</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>Linkage Disequilibrium</subject><subject>Models, Genetic</subject><subject>Original</subject><subject>original-article</subject><subject>Plant Genetics and Genomics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population structure</subject><subject>Reproducibility of Results</subject><subject>Vitis - genetics</subject><subject>Vitis vinifera</subject><issn>0018-067X</issn><issn>1365-2540</issn><issn>0018-067X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkstrFEEQxhtRzBo9eZfGi4jO2o-ZflwCISRGWPSi4K3pmanZ7XV2etOPhfz39rAxahA8FV31q6-qiw-hl5QsKeHqw6a_XTJC6VLyR2hBuWgq1tTkMVoQQlVFhPx-gp7FuCWEcMn0U3TCqJJKK7FA28_-ACPegY05QMR-wKObftg14N5FuMludG1weYfTxibc-RCgS-UBuHU24j4DTh7v_T6PNjk_4ZhC7lIRw3bqcYCShn6CGJ-jJ4MdI7y4i6fo29Xl14vravXl46eL81XVNZSkSoJoFRWd7mldq6ZR7cBqMWihidWN4uWrmmluRTvYQYheKGIJA0JqADU0PT9FZ0fdfW530HcwpWBHsw9uZ8Ot8daZvyuT25i1PxjOFONaFoG3R4HNg7br85WZc4QyIaXQB1rYN3fDgr_JEJPZudjBONoJfI5GC0VlLTX5P8mopLpWs-brB-TW5zCVm81QQxlT85LvjlAXfIwBhvtNKTGzL0zxhZl9YSQv9Ks_b3LP_jJCAd4fgVhK0xrC75n_0vsJ6eHDCw</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Mangin, B</creator><creator>Siberchicot, A</creator><creator>Nicolas, S</creator><creator>Doligez, A</creator><creator>This, P</creator><creator>Cierco-Ayrolles, C</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3159-5903</orcidid><orcidid>https://orcid.org/0000-0002-3024-5813</orcidid><orcidid>https://orcid.org/0000-0002-7638-8318</orcidid></search><sort><creationdate>20120301</creationdate><title>Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness</title><author>Mangin, B ; Siberchicot, A ; Nicolas, S ; Doligez, A ; This, P ; Cierco-Ayrolles, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alleles</topic><topic>Bias</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Computer Simulation</topic><topic>Cytogenetics</topic><topic>Disequilibrium</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Gene loci</topic><topic>Genetics, Population</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Human Genetics</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>Linkage Disequilibrium</topic><topic>Models, Genetic</topic><topic>Original</topic><topic>original-article</topic><topic>Plant Genetics and Genomics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population structure</topic><topic>Reproducibility of Results</topic><topic>Vitis - genetics</topic><topic>Vitis vinifera</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangin, B</creatorcontrib><creatorcontrib>Siberchicot, A</creatorcontrib><creatorcontrib>Nicolas, S</creatorcontrib><creatorcontrib>Doligez, A</creatorcontrib><creatorcontrib>This, P</creatorcontrib><creatorcontrib>Cierco-Ayrolles, C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangin, B</au><au>Siberchicot, A</au><au>Nicolas, S</au><au>Doligez, A</au><au>This, P</au><au>Cierco-Ayrolles, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness</atitle><jtitle>Heredity</jtitle><stitle>Heredity</stitle><addtitle>Heredity (Edinb)</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>108</volume><issue>3</issue><spage>285</spage><epage>291</epage><pages>285-291</pages><issn>0018-067X</issn><eissn>1365-2540</eissn><eissn>0018-067X</eissn><coden>HDTYAT</coden><abstract>Among the several linkage disequilibrium measures known to capture different features of the non-independence between alleles at different loci, the most commonly used for diallelic loci is the
r
2
measure. In the present study, we tackled the problem of the bias of
r
2
estimate, which results from the sample structure and/or the relatedness between genotyped individuals. We derived two novel linkage disequilibrium measures for diallelic loci that are both extensions of the usual
r
2
measure. The first one,
r
S
2
, uses the population structure matrix, which consists of information about the origins of each individual and the admixture proportions of each individual genome. The second one,
r
V
2
, includes the kinship matrix into the calculation. These two corrections can be applied together in order to correct for both biases and are defined either on phased or unphased genotypes.
We proved that these novel measures are linked to the power of association tests under the mixed linear model including structure and kinship corrections. We validated them on simulated data and applied them to real data sets collected on
Vitis vinifera
plants. Our results clearly showed the usefulness of the two corrected
r
2
measures, which actually captured ‘true’ linkage disequilibrium unlike the usual
r
2
measure.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>21878986</pmid><doi>10.1038/hdy.2011.73</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3159-5903</orcidid><orcidid>https://orcid.org/0000-0002-3024-5813</orcidid><orcidid>https://orcid.org/0000-0002-7638-8318</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-067X |
ispartof | Heredity, 2012-03, Vol.108 (3), p.285-291 |
issn | 0018-067X 1365-2540 0018-067X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3282397 |
source | PubMed (Medline); Nature Journals Online |
subjects | Alleles Bias Biomedical and Life Sciences Biomedicine Computer Simulation Cytogenetics Disequilibrium Ecology Evolutionary Biology Gene loci Genetics, Population Genotype Genotypes Human Genetics Human health and pathology Life Sciences Linkage Disequilibrium Models, Genetic Original original-article Plant Genetics and Genomics Polymorphism, Single Nucleotide Population structure Reproducibility of Results Vitis - genetics Vitis vinifera |
title | Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20measures%20of%20linkage%20disequilibrium%20that%20correct%20the%20bias%20due%20to%20population%20structure%20and%20relatedness&rft.jtitle=Heredity&rft.au=Mangin,%20B&rft.date=2012-03-01&rft.volume=108&rft.issue=3&rft.spage=285&rft.epage=291&rft.pages=285-291&rft.issn=0018-067X&rft.eissn=1365-2540&rft.coden=HDTYAT&rft_id=info:doi/10.1038/hdy.2011.73&rft_dat=%3Cproquest_pubme%3E968174790%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=921512287&rft_id=info:pmid/21878986&rfr_iscdi=true |