Loading…

Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness

Among the several linkage disequilibrium measures known to capture different features of the non-independence between alleles at different loci, the most commonly used for diallelic loci is the r 2 measure. In the present study, we tackled the problem of the bias of r 2 estimate, which results from...

Full description

Saved in:
Bibliographic Details
Published in:Heredity 2012-03, Vol.108 (3), p.285-291
Main Authors: Mangin, B, Siberchicot, A, Nicolas, S, Doligez, A, This, P, Cierco-Ayrolles, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3
cites cdi_FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3
container_end_page 291
container_issue 3
container_start_page 285
container_title Heredity
container_volume 108
creator Mangin, B
Siberchicot, A
Nicolas, S
Doligez, A
This, P
Cierco-Ayrolles, C
description Among the several linkage disequilibrium measures known to capture different features of the non-independence between alleles at different loci, the most commonly used for diallelic loci is the r 2 measure. In the present study, we tackled the problem of the bias of r 2 estimate, which results from the sample structure and/or the relatedness between genotyped individuals. We derived two novel linkage disequilibrium measures for diallelic loci that are both extensions of the usual r 2 measure. The first one, r S 2 , uses the population structure matrix, which consists of information about the origins of each individual and the admixture proportions of each individual genome. The second one, r V 2 , includes the kinship matrix into the calculation. These two corrections can be applied together in order to correct for both biases and are defined either on phased or unphased genotypes. We proved that these novel measures are linked to the power of association tests under the mixed linear model including structure and kinship corrections. We validated them on simulated data and applied them to real data sets collected on Vitis vinifera plants. Our results clearly showed the usefulness of the two corrected r 2 measures, which actually captured ‘true’ linkage disequilibrium unlike the usual r 2 measure.
doi_str_mv 10.1038/hdy.2011.73
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3282397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>968174790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3</originalsourceid><addsrcrecordid>eNqFkstrFEEQxhtRzBo9eZfGi4jO2o-ZflwCISRGWPSi4K3pmanZ7XV2etOPhfz39rAxahA8FV31q6-qiw-hl5QsKeHqw6a_XTJC6VLyR2hBuWgq1tTkMVoQQlVFhPx-gp7FuCWEcMn0U3TCqJJKK7FA28_-ACPegY05QMR-wKObftg14N5FuMludG1weYfTxibc-RCgS-UBuHU24j4DTh7v_T6PNjk_4ZhC7lIRw3bqcYCShn6CGJ-jJ4MdI7y4i6fo29Xl14vravXl46eL81XVNZSkSoJoFRWd7mldq6ZR7cBqMWihidWN4uWrmmluRTvYQYheKGIJA0JqADU0PT9FZ0fdfW530HcwpWBHsw9uZ8Ot8daZvyuT25i1PxjOFONaFoG3R4HNg7br85WZc4QyIaXQB1rYN3fDgr_JEJPZudjBONoJfI5GC0VlLTX5P8mopLpWs-brB-TW5zCVm81QQxlT85LvjlAXfIwBhvtNKTGzL0zxhZl9YSQv9Ks_b3LP_jJCAd4fgVhK0xrC75n_0vsJ6eHDCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921512287</pqid></control><display><type>article</type><title>Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness</title><source>PubMed (Medline)</source><source>Nature Journals Online</source><creator>Mangin, B ; Siberchicot, A ; Nicolas, S ; Doligez, A ; This, P ; Cierco-Ayrolles, C</creator><creatorcontrib>Mangin, B ; Siberchicot, A ; Nicolas, S ; Doligez, A ; This, P ; Cierco-Ayrolles, C</creatorcontrib><description>Among the several linkage disequilibrium measures known to capture different features of the non-independence between alleles at different loci, the most commonly used for diallelic loci is the r 2 measure. In the present study, we tackled the problem of the bias of r 2 estimate, which results from the sample structure and/or the relatedness between genotyped individuals. We derived two novel linkage disequilibrium measures for diallelic loci that are both extensions of the usual r 2 measure. The first one, r S 2 , uses the population structure matrix, which consists of information about the origins of each individual and the admixture proportions of each individual genome. The second one, r V 2 , includes the kinship matrix into the calculation. These two corrections can be applied together in order to correct for both biases and are defined either on phased or unphased genotypes. We proved that these novel measures are linked to the power of association tests under the mixed linear model including structure and kinship corrections. We validated them on simulated data and applied them to real data sets collected on Vitis vinifera plants. Our results clearly showed the usefulness of the two corrected r 2 measures, which actually captured ‘true’ linkage disequilibrium unlike the usual r 2 measure.</description><identifier>ISSN: 0018-067X</identifier><identifier>EISSN: 1365-2540</identifier><identifier>EISSN: 0018-067X</identifier><identifier>DOI: 10.1038/hdy.2011.73</identifier><identifier>PMID: 21878986</identifier><identifier>CODEN: HDTYAT</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alleles ; Bias ; Biomedical and Life Sciences ; Biomedicine ; Computer Simulation ; Cytogenetics ; Disequilibrium ; Ecology ; Evolutionary Biology ; Gene loci ; Genetics, Population ; Genotype ; Genotypes ; Human Genetics ; Human health and pathology ; Life Sciences ; Linkage Disequilibrium ; Models, Genetic ; Original ; original-article ; Plant Genetics and Genomics ; Polymorphism, Single Nucleotide ; Population structure ; Reproducibility of Results ; Vitis - genetics ; Vitis vinifera</subject><ispartof>Heredity, 2012-03, Vol.108 (3), p.285-291</ispartof><rights>The Genetics Society 2012</rights><rights>Copyright Nature Publishing Group Mar 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2012 The Genetics Society 2012 The Genetics Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3</citedby><cites>FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3</cites><orcidid>0000-0002-3159-5903 ; 0000-0002-3024-5813 ; 0000-0002-7638-8318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282397/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282397/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21878986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01267769$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mangin, B</creatorcontrib><creatorcontrib>Siberchicot, A</creatorcontrib><creatorcontrib>Nicolas, S</creatorcontrib><creatorcontrib>Doligez, A</creatorcontrib><creatorcontrib>This, P</creatorcontrib><creatorcontrib>Cierco-Ayrolles, C</creatorcontrib><title>Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness</title><title>Heredity</title><addtitle>Heredity</addtitle><addtitle>Heredity (Edinb)</addtitle><description>Among the several linkage disequilibrium measures known to capture different features of the non-independence between alleles at different loci, the most commonly used for diallelic loci is the r 2 measure. In the present study, we tackled the problem of the bias of r 2 estimate, which results from the sample structure and/or the relatedness between genotyped individuals. We derived two novel linkage disequilibrium measures for diallelic loci that are both extensions of the usual r 2 measure. The first one, r S 2 , uses the population structure matrix, which consists of information about the origins of each individual and the admixture proportions of each individual genome. The second one, r V 2 , includes the kinship matrix into the calculation. These two corrections can be applied together in order to correct for both biases and are defined either on phased or unphased genotypes. We proved that these novel measures are linked to the power of association tests under the mixed linear model including structure and kinship corrections. We validated them on simulated data and applied them to real data sets collected on Vitis vinifera plants. Our results clearly showed the usefulness of the two corrected r 2 measures, which actually captured ‘true’ linkage disequilibrium unlike the usual r 2 measure.</description><subject>Alleles</subject><subject>Bias</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Computer Simulation</subject><subject>Cytogenetics</subject><subject>Disequilibrium</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Gene loci</subject><subject>Genetics, Population</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Human Genetics</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>Linkage Disequilibrium</subject><subject>Models, Genetic</subject><subject>Original</subject><subject>original-article</subject><subject>Plant Genetics and Genomics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population structure</subject><subject>Reproducibility of Results</subject><subject>Vitis - genetics</subject><subject>Vitis vinifera</subject><issn>0018-067X</issn><issn>1365-2540</issn><issn>0018-067X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkstrFEEQxhtRzBo9eZfGi4jO2o-ZflwCISRGWPSi4K3pmanZ7XV2etOPhfz39rAxahA8FV31q6-qiw-hl5QsKeHqw6a_XTJC6VLyR2hBuWgq1tTkMVoQQlVFhPx-gp7FuCWEcMn0U3TCqJJKK7FA28_-ACPegY05QMR-wKObftg14N5FuMludG1weYfTxibc-RCgS-UBuHU24j4DTh7v_T6PNjk_4ZhC7lIRw3bqcYCShn6CGJ-jJ4MdI7y4i6fo29Xl14vravXl46eL81XVNZSkSoJoFRWd7mldq6ZR7cBqMWihidWN4uWrmmluRTvYQYheKGIJA0JqADU0PT9FZ0fdfW530HcwpWBHsw9uZ8Ot8daZvyuT25i1PxjOFONaFoG3R4HNg7br85WZc4QyIaXQB1rYN3fDgr_JEJPZudjBONoJfI5GC0VlLTX5P8mopLpWs-brB-TW5zCVm81QQxlT85LvjlAXfIwBhvtNKTGzL0zxhZl9YSQv9Ks_b3LP_jJCAd4fgVhK0xrC75n_0vsJ6eHDCw</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Mangin, B</creator><creator>Siberchicot, A</creator><creator>Nicolas, S</creator><creator>Doligez, A</creator><creator>This, P</creator><creator>Cierco-Ayrolles, C</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3159-5903</orcidid><orcidid>https://orcid.org/0000-0002-3024-5813</orcidid><orcidid>https://orcid.org/0000-0002-7638-8318</orcidid></search><sort><creationdate>20120301</creationdate><title>Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness</title><author>Mangin, B ; Siberchicot, A ; Nicolas, S ; Doligez, A ; This, P ; Cierco-Ayrolles, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alleles</topic><topic>Bias</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Computer Simulation</topic><topic>Cytogenetics</topic><topic>Disequilibrium</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Gene loci</topic><topic>Genetics, Population</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Human Genetics</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>Linkage Disequilibrium</topic><topic>Models, Genetic</topic><topic>Original</topic><topic>original-article</topic><topic>Plant Genetics and Genomics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population structure</topic><topic>Reproducibility of Results</topic><topic>Vitis - genetics</topic><topic>Vitis vinifera</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangin, B</creatorcontrib><creatorcontrib>Siberchicot, A</creatorcontrib><creatorcontrib>Nicolas, S</creatorcontrib><creatorcontrib>Doligez, A</creatorcontrib><creatorcontrib>This, P</creatorcontrib><creatorcontrib>Cierco-Ayrolles, C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection (ProQuest Medical &amp; Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangin, B</au><au>Siberchicot, A</au><au>Nicolas, S</au><au>Doligez, A</au><au>This, P</au><au>Cierco-Ayrolles, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness</atitle><jtitle>Heredity</jtitle><stitle>Heredity</stitle><addtitle>Heredity (Edinb)</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>108</volume><issue>3</issue><spage>285</spage><epage>291</epage><pages>285-291</pages><issn>0018-067X</issn><eissn>1365-2540</eissn><eissn>0018-067X</eissn><coden>HDTYAT</coden><abstract>Among the several linkage disequilibrium measures known to capture different features of the non-independence between alleles at different loci, the most commonly used for diallelic loci is the r 2 measure. In the present study, we tackled the problem of the bias of r 2 estimate, which results from the sample structure and/or the relatedness between genotyped individuals. We derived two novel linkage disequilibrium measures for diallelic loci that are both extensions of the usual r 2 measure. The first one, r S 2 , uses the population structure matrix, which consists of information about the origins of each individual and the admixture proportions of each individual genome. The second one, r V 2 , includes the kinship matrix into the calculation. These two corrections can be applied together in order to correct for both biases and are defined either on phased or unphased genotypes. We proved that these novel measures are linked to the power of association tests under the mixed linear model including structure and kinship corrections. We validated them on simulated data and applied them to real data sets collected on Vitis vinifera plants. Our results clearly showed the usefulness of the two corrected r 2 measures, which actually captured ‘true’ linkage disequilibrium unlike the usual r 2 measure.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>21878986</pmid><doi>10.1038/hdy.2011.73</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3159-5903</orcidid><orcidid>https://orcid.org/0000-0002-3024-5813</orcidid><orcidid>https://orcid.org/0000-0002-7638-8318</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-067X
ispartof Heredity, 2012-03, Vol.108 (3), p.285-291
issn 0018-067X
1365-2540
0018-067X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3282397
source PubMed (Medline); Nature Journals Online
subjects Alleles
Bias
Biomedical and Life Sciences
Biomedicine
Computer Simulation
Cytogenetics
Disequilibrium
Ecology
Evolutionary Biology
Gene loci
Genetics, Population
Genotype
Genotypes
Human Genetics
Human health and pathology
Life Sciences
Linkage Disequilibrium
Models, Genetic
Original
original-article
Plant Genetics and Genomics
Polymorphism, Single Nucleotide
Population structure
Reproducibility of Results
Vitis - genetics
Vitis vinifera
title Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20measures%20of%20linkage%20disequilibrium%20that%20correct%20the%20bias%20due%20to%20population%20structure%20and%20relatedness&rft.jtitle=Heredity&rft.au=Mangin,%20B&rft.date=2012-03-01&rft.volume=108&rft.issue=3&rft.spage=285&rft.epage=291&rft.pages=285-291&rft.issn=0018-067X&rft.eissn=1365-2540&rft.coden=HDTYAT&rft_id=info:doi/10.1038/hdy.2011.73&rft_dat=%3Cproquest_pubme%3E968174790%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-7e6b816c9d1448558bf246f9690a95832019293a6bfaf66d680a02e004ee8f5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=921512287&rft_id=info:pmid/21878986&rfr_iscdi=true