Loading…

Comparison of biometrical models for joint linkage association mapping

Joint linkage association mapping (JLAM) combines the advantages of linkage mapping and association mapping, and is a powerful tool to dissect the genetic architecture of complex traits. The main goal of this study was to use a cross-validation strategy, resample model averaging and empirical data a...

Full description

Saved in:
Bibliographic Details
Published in:Heredity 2012-03, Vol.108 (3), p.332-340
Main Authors: Würschum, T, Liu, W, Gowda, M, Maurer, H P, Fischer, S, Schechert, A, Reif, J C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c476t-83c2df075bc5309662cd9d5c71fc4218bae4eaef6a4d7c364e7386a6e63d124c3
cites cdi_FETCH-LOGICAL-c476t-83c2df075bc5309662cd9d5c71fc4218bae4eaef6a4d7c364e7386a6e63d124c3
container_end_page 340
container_issue 3
container_start_page 332
container_title Heredity
container_volume 108
creator Würschum, T
Liu, W
Gowda, M
Maurer, H P
Fischer, S
Schechert, A
Reif, J C
description Joint linkage association mapping (JLAM) combines the advantages of linkage mapping and association mapping, and is a powerful tool to dissect the genetic architecture of complex traits. The main goal of this study was to use a cross-validation strategy, resample model averaging and empirical data analyses to compare seven different biometrical models for JLAM with regard to the correction for population structure and the quantitative trait loci (QTL) detection power. Three linear models and four linear mixed models with different approaches to control for population stratification were evaluated. Models A, B and C were linear models with either cofactors (Model-A), or cofactors and a population effect (Model-B), or a model in which the cofactors and the single-nucleotide polymorphism effect were modeled as nested within population (Model-C). The mixed models, D, E, F and G, included a random population effect (Model-D), or a random population effect with defined variance structure (Model-E), a kinship matrix defining the degree of relatedness among the genotypes (Model-F), or a kinship matrix and principal coordinates (Model-G). The tested models were conceptually different and were also found to differ in terms of power to detect QTL. Model-B with the cofactors and a population effect, effectively controlled population structure and possessed a high predictive power. The varying allele substitution effects in different populations suggest as a promising strategy for JLAM to use Model-B for the detection of QTL and then to estimate their effects by applying Model-C.
doi_str_mv 10.1038/hdy.2011.78
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3282402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586277081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-83c2df075bc5309662cd9d5c71fc4218bae4eaef6a4d7c364e7386a6e63d124c3</originalsourceid><addsrcrecordid>eNqF0ctLwzAcB_Agis7pybsULx60M68m6UWQ4QsELwreQpamM7NNatIJ--_N2HwieMrh98k3jy8ABwiOECTi7LlajDBEaMTFBhggwoocFxRuggGESOSQ8acdsBvjDEJIOC63wQ5GgotS0AG4Gvu2U8FG7zJfZxPrW9MHq1WTtb4yTcxqH7KZt67PGute1NRkKkavrept2tOqrrNuuge2atVEs79eh-Dx6vJhfJPf3V_fji_uck0563NBNK5qyIuJLggsGcO6KqtCc1Rrmi41UYYaZWqmaMU1YdRwIphihpEKYarJEJyvcrv5pDWVNq4PqpFdsK0KC-mVlT8nzj7LqX-TBAtMIU4Bx-uA4F_nJvaytVGbplHO-HmUJROIU4zh_xIjjkrKeZJHv-TMz4NL_7BEBSwYXaKTFdLBxxhM_XlpBOWyR5l6lMseJRdJH35_56f9KC6B0xWIaeSmJnyd-VfeOzRTqLU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921505647</pqid></control><display><type>article</type><title>Comparison of biometrical models for joint linkage association mapping</title><source>PubMed (Medline)</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Würschum, T ; Liu, W ; Gowda, M ; Maurer, H P ; Fischer, S ; Schechert, A ; Reif, J C</creator><creatorcontrib>Würschum, T ; Liu, W ; Gowda, M ; Maurer, H P ; Fischer, S ; Schechert, A ; Reif, J C</creatorcontrib><description>Joint linkage association mapping (JLAM) combines the advantages of linkage mapping and association mapping, and is a powerful tool to dissect the genetic architecture of complex traits. The main goal of this study was to use a cross-validation strategy, resample model averaging and empirical data analyses to compare seven different biometrical models for JLAM with regard to the correction for population structure and the quantitative trait loci (QTL) detection power. Three linear models and four linear mixed models with different approaches to control for population stratification were evaluated. Models A, B and C were linear models with either cofactors (Model-A), or cofactors and a population effect (Model-B), or a model in which the cofactors and the single-nucleotide polymorphism effect were modeled as nested within population (Model-C). The mixed models, D, E, F and G, included a random population effect (Model-D), or a random population effect with defined variance structure (Model-E), a kinship matrix defining the degree of relatedness among the genotypes (Model-F), or a kinship matrix and principal coordinates (Model-G). The tested models were conceptually different and were also found to differ in terms of power to detect QTL. Model-B with the cofactors and a population effect, effectively controlled population structure and possessed a high predictive power. The varying allele substitution effects in different populations suggest as a promising strategy for JLAM to use Model-B for the detection of QTL and then to estimate their effects by applying Model-C.</description><identifier>ISSN: 0018-067X</identifier><identifier>EISSN: 1365-2540</identifier><identifier>DOI: 10.1038/hdy.2011.78</identifier><identifier>PMID: 21878984</identifier><identifier>CODEN: HDTYAT</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Beta vulgaris - genetics ; Biomedical and Life Sciences ; Biomedicine ; Biometrics ; Chromosome Mapping ; Comparative studies ; Cytogenetics ; Ecology ; Evolutionary Biology ; Gene mapping ; Genetic Linkage ; Genotype ; Genotypes ; Human Genetics ; Linkage Disequilibrium ; Models, Genetic ; Models, Statistical ; Original ; original-article ; Plant Genetics and Genomics ; Population structure ; Quantitative Trait Loci ; Reproducibility of Results</subject><ispartof>Heredity, 2012-03, Vol.108 (3), p.332-340</ispartof><rights>The Genetics Society 2012</rights><rights>Copyright Nature Publishing Group Mar 2012</rights><rights>Copyright © 2012 The Genetics Society 2012 The Genetics Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-83c2df075bc5309662cd9d5c71fc4218bae4eaef6a4d7c364e7386a6e63d124c3</citedby><cites>FETCH-LOGICAL-c476t-83c2df075bc5309662cd9d5c71fc4218bae4eaef6a4d7c364e7386a6e63d124c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282402/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282402/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21878984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Würschum, T</creatorcontrib><creatorcontrib>Liu, W</creatorcontrib><creatorcontrib>Gowda, M</creatorcontrib><creatorcontrib>Maurer, H P</creatorcontrib><creatorcontrib>Fischer, S</creatorcontrib><creatorcontrib>Schechert, A</creatorcontrib><creatorcontrib>Reif, J C</creatorcontrib><title>Comparison of biometrical models for joint linkage association mapping</title><title>Heredity</title><addtitle>Heredity</addtitle><addtitle>Heredity (Edinb)</addtitle><description>Joint linkage association mapping (JLAM) combines the advantages of linkage mapping and association mapping, and is a powerful tool to dissect the genetic architecture of complex traits. The main goal of this study was to use a cross-validation strategy, resample model averaging and empirical data analyses to compare seven different biometrical models for JLAM with regard to the correction for population structure and the quantitative trait loci (QTL) detection power. Three linear models and four linear mixed models with different approaches to control for population stratification were evaluated. Models A, B and C were linear models with either cofactors (Model-A), or cofactors and a population effect (Model-B), or a model in which the cofactors and the single-nucleotide polymorphism effect were modeled as nested within population (Model-C). The mixed models, D, E, F and G, included a random population effect (Model-D), or a random population effect with defined variance structure (Model-E), a kinship matrix defining the degree of relatedness among the genotypes (Model-F), or a kinship matrix and principal coordinates (Model-G). The tested models were conceptually different and were also found to differ in terms of power to detect QTL. Model-B with the cofactors and a population effect, effectively controlled population structure and possessed a high predictive power. The varying allele substitution effects in different populations suggest as a promising strategy for JLAM to use Model-B for the detection of QTL and then to estimate their effects by applying Model-C.</description><subject>Beta vulgaris - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biometrics</subject><subject>Chromosome Mapping</subject><subject>Comparative studies</subject><subject>Cytogenetics</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Gene mapping</subject><subject>Genetic Linkage</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Human Genetics</subject><subject>Linkage Disequilibrium</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Original</subject><subject>original-article</subject><subject>Plant Genetics and Genomics</subject><subject>Population structure</subject><subject>Quantitative Trait Loci</subject><subject>Reproducibility of Results</subject><issn>0018-067X</issn><issn>1365-2540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0ctLwzAcB_Agis7pybsULx60M68m6UWQ4QsELwreQpamM7NNatIJ--_N2HwieMrh98k3jy8ABwiOECTi7LlajDBEaMTFBhggwoocFxRuggGESOSQ8acdsBvjDEJIOC63wQ5GgotS0AG4Gvu2U8FG7zJfZxPrW9MHq1WTtb4yTcxqH7KZt67PGute1NRkKkavrept2tOqrrNuuge2atVEs79eh-Dx6vJhfJPf3V_fji_uck0563NBNK5qyIuJLggsGcO6KqtCc1Rrmi41UYYaZWqmaMU1YdRwIphihpEKYarJEJyvcrv5pDWVNq4PqpFdsK0KC-mVlT8nzj7LqX-TBAtMIU4Bx-uA4F_nJvaytVGbplHO-HmUJROIU4zh_xIjjkrKeZJHv-TMz4NL_7BEBSwYXaKTFdLBxxhM_XlpBOWyR5l6lMseJRdJH35_56f9KC6B0xWIaeSmJnyd-VfeOzRTqLU</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Würschum, T</creator><creator>Liu, W</creator><creator>Gowda, M</creator><creator>Maurer, H P</creator><creator>Fischer, S</creator><creator>Schechert, A</creator><creator>Reif, J C</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120301</creationdate><title>Comparison of biometrical models for joint linkage association mapping</title><author>Würschum, T ; Liu, W ; Gowda, M ; Maurer, H P ; Fischer, S ; Schechert, A ; Reif, J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-83c2df075bc5309662cd9d5c71fc4218bae4eaef6a4d7c364e7386a6e63d124c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Beta vulgaris - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biometrics</topic><topic>Chromosome Mapping</topic><topic>Comparative studies</topic><topic>Cytogenetics</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Gene mapping</topic><topic>Genetic Linkage</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Human Genetics</topic><topic>Linkage Disequilibrium</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Original</topic><topic>original-article</topic><topic>Plant Genetics and Genomics</topic><topic>Population structure</topic><topic>Quantitative Trait Loci</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Würschum, T</creatorcontrib><creatorcontrib>Liu, W</creatorcontrib><creatorcontrib>Gowda, M</creatorcontrib><creatorcontrib>Maurer, H P</creatorcontrib><creatorcontrib>Fischer, S</creatorcontrib><creatorcontrib>Schechert, A</creatorcontrib><creatorcontrib>Reif, J C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Würschum, T</au><au>Liu, W</au><au>Gowda, M</au><au>Maurer, H P</au><au>Fischer, S</au><au>Schechert, A</au><au>Reif, J C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of biometrical models for joint linkage association mapping</atitle><jtitle>Heredity</jtitle><stitle>Heredity</stitle><addtitle>Heredity (Edinb)</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>108</volume><issue>3</issue><spage>332</spage><epage>340</epage><pages>332-340</pages><issn>0018-067X</issn><eissn>1365-2540</eissn><coden>HDTYAT</coden><abstract>Joint linkage association mapping (JLAM) combines the advantages of linkage mapping and association mapping, and is a powerful tool to dissect the genetic architecture of complex traits. The main goal of this study was to use a cross-validation strategy, resample model averaging and empirical data analyses to compare seven different biometrical models for JLAM with regard to the correction for population structure and the quantitative trait loci (QTL) detection power. Three linear models and four linear mixed models with different approaches to control for population stratification were evaluated. Models A, B and C were linear models with either cofactors (Model-A), or cofactors and a population effect (Model-B), or a model in which the cofactors and the single-nucleotide polymorphism effect were modeled as nested within population (Model-C). The mixed models, D, E, F and G, included a random population effect (Model-D), or a random population effect with defined variance structure (Model-E), a kinship matrix defining the degree of relatedness among the genotypes (Model-F), or a kinship matrix and principal coordinates (Model-G). The tested models were conceptually different and were also found to differ in terms of power to detect QTL. Model-B with the cofactors and a population effect, effectively controlled population structure and possessed a high predictive power. The varying allele substitution effects in different populations suggest as a promising strategy for JLAM to use Model-B for the detection of QTL and then to estimate their effects by applying Model-C.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>21878984</pmid><doi>10.1038/hdy.2011.78</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-067X
ispartof Heredity, 2012-03, Vol.108 (3), p.332-340
issn 0018-067X
1365-2540
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3282402
source PubMed (Medline); Springer Nature - Connect here FIRST to enable access
subjects Beta vulgaris - genetics
Biomedical and Life Sciences
Biomedicine
Biometrics
Chromosome Mapping
Comparative studies
Cytogenetics
Ecology
Evolutionary Biology
Gene mapping
Genetic Linkage
Genotype
Genotypes
Human Genetics
Linkage Disequilibrium
Models, Genetic
Models, Statistical
Original
original-article
Plant Genetics and Genomics
Population structure
Quantitative Trait Loci
Reproducibility of Results
title Comparison of biometrical models for joint linkage association mapping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20biometrical%20models%20for%20joint%20linkage%20association%20mapping&rft.jtitle=Heredity&rft.au=W%C3%BCrschum,%20T&rft.date=2012-03-01&rft.volume=108&rft.issue=3&rft.spage=332&rft.epage=340&rft.pages=332-340&rft.issn=0018-067X&rft.eissn=1365-2540&rft.coden=HDTYAT&rft_id=info:doi/10.1038/hdy.2011.78&rft_dat=%3Cproquest_pubme%3E2586277081%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-83c2df075bc5309662cd9d5c71fc4218bae4eaef6a4d7c364e7386a6e63d124c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=921505647&rft_id=info:pmid/21878984&rfr_iscdi=true