Loading…

Computational prediction of efficient splice sites for trans-splicing ribozymes

Group I introns have been engineered into trans-splicing ribozymes capable of replacing the 3'-terminal portion of an external mRNA with their own 3'-exon. Although this design makes trans-splicing ribozymes potentially useful for therapeutic application, their trans-splicing efficiency is...

Full description

Saved in:
Bibliographic Details
Published in:RNA (Cambridge) 2012-03, Vol.18 (3), p.590-602
Main Authors: Meluzzi, Dario, Olson, Karen E, Dolan, Gregory F, Arya, Gaurav, Müller, Ulrich F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-ea47e6306e9724a988ea68d4a1264517caa7b929935194ef7c39fbc01ae4a4c73
cites cdi_FETCH-LOGICAL-c421t-ea47e6306e9724a988ea68d4a1264517caa7b929935194ef7c39fbc01ae4a4c73
container_end_page 602
container_issue 3
container_start_page 590
container_title RNA (Cambridge)
container_volume 18
creator Meluzzi, Dario
Olson, Karen E
Dolan, Gregory F
Arya, Gaurav
Müller, Ulrich F
description Group I introns have been engineered into trans-splicing ribozymes capable of replacing the 3'-terminal portion of an external mRNA with their own 3'-exon. Although this design makes trans-splicing ribozymes potentially useful for therapeutic application, their trans-splicing efficiency is usually too low for medical use. One factor that strongly influences trans-splicing efficiency is the position of the target splice site on the mRNA substrate. Viable splice sites are currently determined using a biochemical trans-tagging assay. Here, we propose a rapid and inexpensive alternative approach to identify efficient splice sites. This approach involves the computation of the binding free energies between ribozyme and mRNA substrate. We found that the computed binding free energies correlate well with the trans-splicing efficiency experimentally determined at 18 different splice sites on the mRNA of chloramphenicol acetyl transferase. In contrast, our results from the trans-tagging assay correlate less well with measured trans-splicing efficiency. The computed free energy components suggest that splice site efficiency depends on the following secondary structure rearrangements: hybridization of the ribozyme's internal guide sequence (IGS) with mRNA substrate (most important), unfolding of substrate proximal to the splice site, and release of the IGS from the 3'-exon (least important). The proposed computational approach can also be extended to fulfill additional design requirements of efficient trans-splicing ribozymes, such as the optimization of 3'-exon and extended guide sequences.
doi_str_mv 10.1261/rna.029884.111
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3285945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>922215839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-ea47e6306e9724a988ea68d4a1264517caa7b929935194ef7c39fbc01ae4a4c73</originalsourceid><addsrcrecordid>eNqNkb1PwzAQxS0EoqWwMqJsTCnxRxJ7QUIVX1KlLjBbF_dSjJI42ClS-etxKVSwMfl89-7pnX6EnNNsSllBr3wH04wpKcWUUnpAxlQUKlVZRg9jzfM8lVyyETkJ4TU2eRwfkxFjrBQqL8ZkMXNtvx5gsK6DJuk9Lq3ZfhJXJ1jX1ljshiT0jTWYBDtgSGrnk8FDF9Kvtu1WibeV-9i0GE7JUQ1NwLPvd0Ke726fZg_pfHH_OLuZp0YwOqQIosSCZwWqkgmI-REKuRQQjxI5LQ1AWSmmFM-pEliXhqu6MhkFFCBMySfkeufbr6sWlyaG9NDo3tsW_EY7sPrvpLMveuXeNWcyVyKPBpffBt69rTEMurXBYNNAh24dtGKFlDym-YeSMZpLrqJyulMa70LwWO_z0ExvcemIS-9w6YgrLlz8vmIv_-HDPwGL9pLd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922215839</pqid></control><display><type>article</type><title>Computational prediction of efficient splice sites for trans-splicing ribozymes</title><source>PubMed Central</source><creator>Meluzzi, Dario ; Olson, Karen E ; Dolan, Gregory F ; Arya, Gaurav ; Müller, Ulrich F</creator><creatorcontrib>Meluzzi, Dario ; Olson, Karen E ; Dolan, Gregory F ; Arya, Gaurav ; Müller, Ulrich F</creatorcontrib><description>Group I introns have been engineered into trans-splicing ribozymes capable of replacing the 3'-terminal portion of an external mRNA with their own 3'-exon. Although this design makes trans-splicing ribozymes potentially useful for therapeutic application, their trans-splicing efficiency is usually too low for medical use. One factor that strongly influences trans-splicing efficiency is the position of the target splice site on the mRNA substrate. Viable splice sites are currently determined using a biochemical trans-tagging assay. Here, we propose a rapid and inexpensive alternative approach to identify efficient splice sites. This approach involves the computation of the binding free energies between ribozyme and mRNA substrate. We found that the computed binding free energies correlate well with the trans-splicing efficiency experimentally determined at 18 different splice sites on the mRNA of chloramphenicol acetyl transferase. In contrast, our results from the trans-tagging assay correlate less well with measured trans-splicing efficiency. The computed free energy components suggest that splice site efficiency depends on the following secondary structure rearrangements: hybridization of the ribozyme's internal guide sequence (IGS) with mRNA substrate (most important), unfolding of substrate proximal to the splice site, and release of the IGS from the 3'-exon (least important). The proposed computational approach can also be extended to fulfill additional design requirements of efficient trans-splicing ribozymes, such as the optimization of 3'-exon and extended guide sequences.</description><identifier>ISSN: 1355-8382</identifier><identifier>EISSN: 1469-9001</identifier><identifier>DOI: 10.1261/rna.029884.111</identifier><identifier>PMID: 22274956</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Computational Biology - methods ; Method ; Nucleic Acid Conformation ; RNA Splice Sites ; RNA, Catalytic - genetics ; RNA, Catalytic - metabolism ; RNA, Messenger - metabolism ; Trans-Splicing - genetics ; Transcription, Genetic</subject><ispartof>RNA (Cambridge), 2012-03, Vol.18 (3), p.590-602</ispartof><rights>Copyright © 2012 RNA Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-ea47e6306e9724a988ea68d4a1264517caa7b929935194ef7c39fbc01ae4a4c73</citedby><cites>FETCH-LOGICAL-c421t-ea47e6306e9724a988ea68d4a1264517caa7b929935194ef7c39fbc01ae4a4c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285945/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285945/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22274956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meluzzi, Dario</creatorcontrib><creatorcontrib>Olson, Karen E</creatorcontrib><creatorcontrib>Dolan, Gregory F</creatorcontrib><creatorcontrib>Arya, Gaurav</creatorcontrib><creatorcontrib>Müller, Ulrich F</creatorcontrib><title>Computational prediction of efficient splice sites for trans-splicing ribozymes</title><title>RNA (Cambridge)</title><addtitle>RNA</addtitle><description>Group I introns have been engineered into trans-splicing ribozymes capable of replacing the 3'-terminal portion of an external mRNA with their own 3'-exon. Although this design makes trans-splicing ribozymes potentially useful for therapeutic application, their trans-splicing efficiency is usually too low for medical use. One factor that strongly influences trans-splicing efficiency is the position of the target splice site on the mRNA substrate. Viable splice sites are currently determined using a biochemical trans-tagging assay. Here, we propose a rapid and inexpensive alternative approach to identify efficient splice sites. This approach involves the computation of the binding free energies between ribozyme and mRNA substrate. We found that the computed binding free energies correlate well with the trans-splicing efficiency experimentally determined at 18 different splice sites on the mRNA of chloramphenicol acetyl transferase. In contrast, our results from the trans-tagging assay correlate less well with measured trans-splicing efficiency. The computed free energy components suggest that splice site efficiency depends on the following secondary structure rearrangements: hybridization of the ribozyme's internal guide sequence (IGS) with mRNA substrate (most important), unfolding of substrate proximal to the splice site, and release of the IGS from the 3'-exon (least important). The proposed computational approach can also be extended to fulfill additional design requirements of efficient trans-splicing ribozymes, such as the optimization of 3'-exon and extended guide sequences.</description><subject>Computational Biology - methods</subject><subject>Method</subject><subject>Nucleic Acid Conformation</subject><subject>RNA Splice Sites</subject><subject>RNA, Catalytic - genetics</subject><subject>RNA, Catalytic - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Trans-Splicing - genetics</subject><subject>Transcription, Genetic</subject><issn>1355-8382</issn><issn>1469-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkb1PwzAQxS0EoqWwMqJsTCnxRxJ7QUIVX1KlLjBbF_dSjJI42ClS-etxKVSwMfl89-7pnX6EnNNsSllBr3wH04wpKcWUUnpAxlQUKlVZRg9jzfM8lVyyETkJ4TU2eRwfkxFjrBQqL8ZkMXNtvx5gsK6DJuk9Lq3ZfhJXJ1jX1ljshiT0jTWYBDtgSGrnk8FDF9Kvtu1WibeV-9i0GE7JUQ1NwLPvd0Ke726fZg_pfHH_OLuZp0YwOqQIosSCZwWqkgmI-REKuRQQjxI5LQ1AWSmmFM-pEliXhqu6MhkFFCBMySfkeufbr6sWlyaG9NDo3tsW_EY7sPrvpLMveuXeNWcyVyKPBpffBt69rTEMurXBYNNAh24dtGKFlDym-YeSMZpLrqJyulMa70LwWO_z0ExvcemIS-9w6YgrLlz8vmIv_-HDPwGL9pLd</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Meluzzi, Dario</creator><creator>Olson, Karen E</creator><creator>Dolan, Gregory F</creator><creator>Arya, Gaurav</creator><creator>Müller, Ulrich F</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20120301</creationdate><title>Computational prediction of efficient splice sites for trans-splicing ribozymes</title><author>Meluzzi, Dario ; Olson, Karen E ; Dolan, Gregory F ; Arya, Gaurav ; Müller, Ulrich F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-ea47e6306e9724a988ea68d4a1264517caa7b929935194ef7c39fbc01ae4a4c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational Biology - methods</topic><topic>Method</topic><topic>Nucleic Acid Conformation</topic><topic>RNA Splice Sites</topic><topic>RNA, Catalytic - genetics</topic><topic>RNA, Catalytic - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Trans-Splicing - genetics</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meluzzi, Dario</creatorcontrib><creatorcontrib>Olson, Karen E</creatorcontrib><creatorcontrib>Dolan, Gregory F</creatorcontrib><creatorcontrib>Arya, Gaurav</creatorcontrib><creatorcontrib>Müller, Ulrich F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RNA (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meluzzi, Dario</au><au>Olson, Karen E</au><au>Dolan, Gregory F</au><au>Arya, Gaurav</au><au>Müller, Ulrich F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational prediction of efficient splice sites for trans-splicing ribozymes</atitle><jtitle>RNA (Cambridge)</jtitle><addtitle>RNA</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>18</volume><issue>3</issue><spage>590</spage><epage>602</epage><pages>590-602</pages><issn>1355-8382</issn><eissn>1469-9001</eissn><abstract>Group I introns have been engineered into trans-splicing ribozymes capable of replacing the 3'-terminal portion of an external mRNA with their own 3'-exon. Although this design makes trans-splicing ribozymes potentially useful for therapeutic application, their trans-splicing efficiency is usually too low for medical use. One factor that strongly influences trans-splicing efficiency is the position of the target splice site on the mRNA substrate. Viable splice sites are currently determined using a biochemical trans-tagging assay. Here, we propose a rapid and inexpensive alternative approach to identify efficient splice sites. This approach involves the computation of the binding free energies between ribozyme and mRNA substrate. We found that the computed binding free energies correlate well with the trans-splicing efficiency experimentally determined at 18 different splice sites on the mRNA of chloramphenicol acetyl transferase. In contrast, our results from the trans-tagging assay correlate less well with measured trans-splicing efficiency. The computed free energy components suggest that splice site efficiency depends on the following secondary structure rearrangements: hybridization of the ribozyme's internal guide sequence (IGS) with mRNA substrate (most important), unfolding of substrate proximal to the splice site, and release of the IGS from the 3'-exon (least important). The proposed computational approach can also be extended to fulfill additional design requirements of efficient trans-splicing ribozymes, such as the optimization of 3'-exon and extended guide sequences.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>22274956</pmid><doi>10.1261/rna.029884.111</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-8382
ispartof RNA (Cambridge), 2012-03, Vol.18 (3), p.590-602
issn 1355-8382
1469-9001
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3285945
source PubMed Central
subjects Computational Biology - methods
Method
Nucleic Acid Conformation
RNA Splice Sites
RNA, Catalytic - genetics
RNA, Catalytic - metabolism
RNA, Messenger - metabolism
Trans-Splicing - genetics
Transcription, Genetic
title Computational prediction of efficient splice sites for trans-splicing ribozymes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20prediction%20of%20efficient%20splice%20sites%20for%20trans-splicing%20ribozymes&rft.jtitle=RNA%20(Cambridge)&rft.au=Meluzzi,%20Dario&rft.date=2012-03-01&rft.volume=18&rft.issue=3&rft.spage=590&rft.epage=602&rft.pages=590-602&rft.issn=1355-8382&rft.eissn=1469-9001&rft_id=info:doi/10.1261/rna.029884.111&rft_dat=%3Cproquest_pubme%3E922215839%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-ea47e6306e9724a988ea68d4a1264517caa7b929935194ef7c39fbc01ae4a4c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=922215839&rft_id=info:pmid/22274956&rfr_iscdi=true