Loading…
Evaluation of association tests for rare variants using simulated data sets in the Genetic Analysis Workshop 17 data
We evaluate four association tests for rare variants-the combined multivariate and collapsing (CMC) method, two weighted-sum methods, and a variable threshold method-by applying them to the simulated data sets of unrelated individuals in the Genetic Analysis Workshop 17 (GAW17) data. The family-wise...
Saved in:
Published in: | BMC proceedings 2011, Vol.5 Suppl 9 (Suppl 9), p.S86-S86, Article S86 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b3696-bf5b469b83cb2dbfe7610fd10cca0d4f955b74fecad1f856f37aa92b486c9e173 |
---|---|
cites | cdi_FETCH-LOGICAL-b3696-bf5b469b83cb2dbfe7610fd10cca0d4f955b74fecad1f856f37aa92b486c9e173 |
container_end_page | S86 |
container_issue | Suppl 9 |
container_start_page | S86 |
container_title | BMC proceedings |
container_volume | 5 Suppl 9 |
creator | Chen, Wenan Gao, Xi Wang, Jiexun Sun, Chuanyu Wan, Wen Zhi, Degui Liu, Nianjun Chen, Xiangning Gao, Guimin |
description | We evaluate four association tests for rare variants-the combined multivariate and collapsing (CMC) method, two weighted-sum methods, and a variable threshold method-by applying them to the simulated data sets of unrelated individuals in the Genetic Analysis Workshop 17 (GAW17) data. The family-wise error rate (FWER) and average power are used as criteria for evaluation. Our results show that when all nonsynonymous SNPs (rare variants and common variants) in a gene are jointly analyzed, the CMC method fails to control the FWER; when only rare variants (single-nucleotide polymorphisms with minor allele frequency less than 0.05) are analyzed, all four methods can control FWER well. All four methods have comparable power, which is low for the analysis of the GAW17 data sets. Three of the methods (not including the CMC method) involve estimation of p-values using permutation procedures that either can be computationally intensive or generate inflated FWERs. We adapt a fast permutation procedure into these three methods. The results show that using the fast permutation procedure can produce FWERs and average powers close to the values obtained from the standard permutation procedure on the GAW17 data sets. The standard permutation procedure is computationally intensive. |
doi_str_mv | 10.1186/1753-6561-5-S9-S86 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3287927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1674960112</sourcerecordid><originalsourceid>FETCH-LOGICAL-b3696-bf5b469b83cb2dbfe7610fd10cca0d4f955b74fecad1f856f37aa92b486c9e173</originalsourceid><addsrcrecordid>eNqFUktv1DAQthCIlsIf4IAsTr2k-BHb8QWpqpZSqRKHBXG0xo7ddUnixU5W6r8n6ZZVi0CcbM_3mNHnQegtJWeUNvIDVYJXUkhaiWqtq3Ujn6HjQ_H5o_sRelXKLSGSCM1eoiPGuOK1EsdoXO2gm2CMacApYCglubh_jr6MBYeUcYbs8Q5yhGGuTCUON7jEfupg9C1uYQRc_IzEWbTx-NIPfowOnw_Q3ZVY8PeUf5RN2mKq7tmv0YsAXfFvHs4T9O3T6uvF5-r6y-XVxfl1ZbnUsrJB2Fpq23BnWWuDV5KS0FLiHJC2DloIq-rgHbQ0NEIGrgA0s3UjnfZU8RP0ce-7nWzvW-eHMUNntjn2kO9MgmieIkPcmJu0M5w1SrPFYLU3sDH9w-Ap4lJvltTNkroRZq3N_C2zz-nDIDn9nOZcTR-L810Hg09TuZfUspGy_j9VqlpLQimbqe__oN6mKc-hF6OJ5KrhbGnN9iSXUynZh8P0lJhljf4-77vHwR0kv_eG_wL3LsZq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>906378326</pqid></control><display><type>article</type><title>Evaluation of association tests for rare variants using simulated data sets in the Genetic Analysis Workshop 17 data</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Chen, Wenan ; Gao, Xi ; Wang, Jiexun ; Sun, Chuanyu ; Wan, Wen ; Zhi, Degui ; Liu, Nianjun ; Chen, Xiangning ; Gao, Guimin</creator><creatorcontrib>Chen, Wenan ; Gao, Xi ; Wang, Jiexun ; Sun, Chuanyu ; Wan, Wen ; Zhi, Degui ; Liu, Nianjun ; Chen, Xiangning ; Gao, Guimin</creatorcontrib><description>We evaluate four association tests for rare variants-the combined multivariate and collapsing (CMC) method, two weighted-sum methods, and a variable threshold method-by applying them to the simulated data sets of unrelated individuals in the Genetic Analysis Workshop 17 (GAW17) data. The family-wise error rate (FWER) and average power are used as criteria for evaluation. Our results show that when all nonsynonymous SNPs (rare variants and common variants) in a gene are jointly analyzed, the CMC method fails to control the FWER; when only rare variants (single-nucleotide polymorphisms with minor allele frequency less than 0.05) are analyzed, all four methods can control FWER well. All four methods have comparable power, which is low for the analysis of the GAW17 data sets. Three of the methods (not including the CMC method) involve estimation of p-values using permutation procedures that either can be computationally intensive or generate inflated FWERs. We adapt a fast permutation procedure into these three methods. The results show that using the fast permutation procedure can produce FWERs and average powers close to the values obtained from the standard permutation procedure on the GAW17 data sets. The standard permutation procedure is computationally intensive.</description><identifier>ISSN: 1753-6561</identifier><identifier>EISSN: 1753-6561</identifier><identifier>DOI: 10.1186/1753-6561-5-S9-S86</identifier><identifier>PMID: 22373475</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Design ; Disease ; Genes ; Genetics ; Genomes ; Hypothesis testing ; Methods ; Multivariate analysis ; Normal distribution ; Proceedings ; Standard deviation ; Studies</subject><ispartof>BMC proceedings, 2011, Vol.5 Suppl 9 (Suppl 9), p.S86-S86, Article S86</ispartof><rights>2011 Chen et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2011 Chen et al; licensee BioMed Central Ltd. 2011 Chen et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b3696-bf5b469b83cb2dbfe7610fd10cca0d4f955b74fecad1f856f37aa92b486c9e173</citedby><cites>FETCH-LOGICAL-b3696-bf5b469b83cb2dbfe7610fd10cca0d4f955b74fecad1f856f37aa92b486c9e173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287927/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/906378326?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,4010,25734,27904,27905,27906,36993,36994,44571,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22373475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Wenan</creatorcontrib><creatorcontrib>Gao, Xi</creatorcontrib><creatorcontrib>Wang, Jiexun</creatorcontrib><creatorcontrib>Sun, Chuanyu</creatorcontrib><creatorcontrib>Wan, Wen</creatorcontrib><creatorcontrib>Zhi, Degui</creatorcontrib><creatorcontrib>Liu, Nianjun</creatorcontrib><creatorcontrib>Chen, Xiangning</creatorcontrib><creatorcontrib>Gao, Guimin</creatorcontrib><title>Evaluation of association tests for rare variants using simulated data sets in the Genetic Analysis Workshop 17 data</title><title>BMC proceedings</title><addtitle>BMC Proc</addtitle><description>We evaluate four association tests for rare variants-the combined multivariate and collapsing (CMC) method, two weighted-sum methods, and a variable threshold method-by applying them to the simulated data sets of unrelated individuals in the Genetic Analysis Workshop 17 (GAW17) data. The family-wise error rate (FWER) and average power are used as criteria for evaluation. Our results show that when all nonsynonymous SNPs (rare variants and common variants) in a gene are jointly analyzed, the CMC method fails to control the FWER; when only rare variants (single-nucleotide polymorphisms with minor allele frequency less than 0.05) are analyzed, all four methods can control FWER well. All four methods have comparable power, which is low for the analysis of the GAW17 data sets. Three of the methods (not including the CMC method) involve estimation of p-values using permutation procedures that either can be computationally intensive or generate inflated FWERs. We adapt a fast permutation procedure into these three methods. The results show that using the fast permutation procedure can produce FWERs and average powers close to the values obtained from the standard permutation procedure on the GAW17 data sets. The standard permutation procedure is computationally intensive.</description><subject>Design</subject><subject>Disease</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Hypothesis testing</subject><subject>Methods</subject><subject>Multivariate analysis</subject><subject>Normal distribution</subject><subject>Proceedings</subject><subject>Standard deviation</subject><subject>Studies</subject><issn>1753-6561</issn><issn>1753-6561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFUktv1DAQthCIlsIf4IAsTr2k-BHb8QWpqpZSqRKHBXG0xo7ddUnixU5W6r8n6ZZVi0CcbM_3mNHnQegtJWeUNvIDVYJXUkhaiWqtq3Ujn6HjQ_H5o_sRelXKLSGSCM1eoiPGuOK1EsdoXO2gm2CMacApYCglubh_jr6MBYeUcYbs8Q5yhGGuTCUON7jEfupg9C1uYQRc_IzEWbTx-NIPfowOnw_Q3ZVY8PeUf5RN2mKq7tmv0YsAXfFvHs4T9O3T6uvF5-r6y-XVxfl1ZbnUsrJB2Fpq23BnWWuDV5KS0FLiHJC2DloIq-rgHbQ0NEIGrgA0s3UjnfZU8RP0ce-7nWzvW-eHMUNntjn2kO9MgmieIkPcmJu0M5w1SrPFYLU3sDH9w-Ap4lJvltTNkroRZq3N_C2zz-nDIDn9nOZcTR-L810Hg09TuZfUspGy_j9VqlpLQimbqe__oN6mKc-hF6OJ5KrhbGnN9iSXUynZh8P0lJhljf4-77vHwR0kv_eG_wL3LsZq</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Chen, Wenan</creator><creator>Gao, Xi</creator><creator>Wang, Jiexun</creator><creator>Sun, Chuanyu</creator><creator>Wan, Wen</creator><creator>Zhi, Degui</creator><creator>Liu, Nianjun</creator><creator>Chen, Xiangning</creator><creator>Gao, Guimin</creator><general>BioMed Central</general><general>BioMed Central Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>2011</creationdate><title>Evaluation of association tests for rare variants using simulated data sets in the Genetic Analysis Workshop 17 data</title><author>Chen, Wenan ; Gao, Xi ; Wang, Jiexun ; Sun, Chuanyu ; Wan, Wen ; Zhi, Degui ; Liu, Nianjun ; Chen, Xiangning ; Gao, Guimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b3696-bf5b469b83cb2dbfe7610fd10cca0d4f955b74fecad1f856f37aa92b486c9e173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Design</topic><topic>Disease</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Hypothesis testing</topic><topic>Methods</topic><topic>Multivariate analysis</topic><topic>Normal distribution</topic><topic>Proceedings</topic><topic>Standard deviation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wenan</creatorcontrib><creatorcontrib>Gao, Xi</creatorcontrib><creatorcontrib>Wang, Jiexun</creatorcontrib><creatorcontrib>Sun, Chuanyu</creatorcontrib><creatorcontrib>Wan, Wen</creatorcontrib><creatorcontrib>Zhi, Degui</creatorcontrib><creatorcontrib>Liu, Nianjun</creatorcontrib><creatorcontrib>Chen, Xiangning</creatorcontrib><creatorcontrib>Gao, Guimin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wenan</au><au>Gao, Xi</au><au>Wang, Jiexun</au><au>Sun, Chuanyu</au><au>Wan, Wen</au><au>Zhi, Degui</au><au>Liu, Nianjun</au><au>Chen, Xiangning</au><au>Gao, Guimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of association tests for rare variants using simulated data sets in the Genetic Analysis Workshop 17 data</atitle><jtitle>BMC proceedings</jtitle><addtitle>BMC Proc</addtitle><date>2011</date><risdate>2011</risdate><volume>5 Suppl 9</volume><issue>Suppl 9</issue><spage>S86</spage><epage>S86</epage><pages>S86-S86</pages><artnum>S86</artnum><issn>1753-6561</issn><eissn>1753-6561</eissn><abstract>We evaluate four association tests for rare variants-the combined multivariate and collapsing (CMC) method, two weighted-sum methods, and a variable threshold method-by applying them to the simulated data sets of unrelated individuals in the Genetic Analysis Workshop 17 (GAW17) data. The family-wise error rate (FWER) and average power are used as criteria for evaluation. Our results show that when all nonsynonymous SNPs (rare variants and common variants) in a gene are jointly analyzed, the CMC method fails to control the FWER; when only rare variants (single-nucleotide polymorphisms with minor allele frequency less than 0.05) are analyzed, all four methods can control FWER well. All four methods have comparable power, which is low for the analysis of the GAW17 data sets. Three of the methods (not including the CMC method) involve estimation of p-values using permutation procedures that either can be computationally intensive or generate inflated FWERs. We adapt a fast permutation procedure into these three methods. The results show that using the fast permutation procedure can produce FWERs and average powers close to the values obtained from the standard permutation procedure on the GAW17 data sets. The standard permutation procedure is computationally intensive.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>22373475</pmid><doi>10.1186/1753-6561-5-S9-S86</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1753-6561 |
ispartof | BMC proceedings, 2011, Vol.5 Suppl 9 (Suppl 9), p.S86-S86, Article S86 |
issn | 1753-6561 1753-6561 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3287927 |
source | Publicly Available Content Database; PubMed Central |
subjects | Design Disease Genes Genetics Genomes Hypothesis testing Methods Multivariate analysis Normal distribution Proceedings Standard deviation Studies |
title | Evaluation of association tests for rare variants using simulated data sets in the Genetic Analysis Workshop 17 data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20association%20tests%20for%20rare%20variants%20using%20simulated%20data%20sets%20in%20the%20Genetic%20Analysis%20Workshop%2017%20data&rft.jtitle=BMC%20proceedings&rft.au=Chen,%20Wenan&rft.date=2011&rft.volume=5%20Suppl%209&rft.issue=Suppl%209&rft.spage=S86&rft.epage=S86&rft.pages=S86-S86&rft.artnum=S86&rft.issn=1753-6561&rft.eissn=1753-6561&rft_id=info:doi/10.1186/1753-6561-5-S9-S86&rft_dat=%3Cproquest_pubme%3E1674960112%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b3696-bf5b469b83cb2dbfe7610fd10cca0d4f955b74fecad1f856f37aa92b486c9e173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=906378326&rft_id=info:pmid/22373475&rfr_iscdi=true |