Loading…

Nicotinic acetylcholine receptors in rat forebrain that bind 18F-nifene: Relating PET imaging, autoradiography, and behavior

Nicotinic acetylcholine receptors (nAChRs) in the brain are important for cognitive function; however, their specific role in relevant brain regions remains unclear. In this study, we used the novel compound 18F‐nifene to examine the distribution of nAChRs in the rat forebrain, and for individual an...

Full description

Saved in:
Bibliographic Details
Published in:Synapse (New York, N.Y.) N.Y.), 2012-05, Vol.66 (5), p.418-434
Main Authors: Bieszczad, Kasia M., Kant, Ritu, Constantinescu, Cristian C., Pandey, Suresh K., Kawai, Hideki D., Metherate, Raju, Weinberger, Norman M., Mukherjee, Jogeshwar
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 434
container_issue 5
container_start_page 418
container_title Synapse (New York, N.Y.)
container_volume 66
creator Bieszczad, Kasia M.
Kant, Ritu
Constantinescu, Cristian C.
Pandey, Suresh K.
Kawai, Hideki D.
Metherate, Raju
Weinberger, Norman M.
Mukherjee, Jogeshwar
description Nicotinic acetylcholine receptors (nAChRs) in the brain are important for cognitive function; however, their specific role in relevant brain regions remains unclear. In this study, we used the novel compound 18F‐nifene to examine the distribution of nAChRs in the rat forebrain, and for individual animals related the results to behavioral performance on an auditory‐cognitive task. We first show negligible binding of 18F‐nifene in mice lacking the β2 nAChR subunit, consistent with previous findings that 18F‐nifene binds to α4β2* nAChRs. We then examined the distribution of 18F‐nifene in rat using three methods: in vivo PET, ex vivo PET and autoradiography. Generally, 18F‐nifene labeled forebrain regions known to contain nAChRs, and the three methods produced similar relative binding among regions. Importantly, 18F‐nifene also labeled some white matter (myelinated axon) tracts, most prominently in the temporal subcortical region that contains the auditory thalamocortical pathway. Finally, we related 18F‐nifene binding in several forebrain regions to each animal's performance on an auditory‐cued, active avoidance task. The strongest correlations with performance after 14 days training were found for 18F‐nifene binding in the temporal subcortical white matter, subiculum, and medial frontal cortex (correlation coefficients, r > 0.8); there was no correlation with binding in the auditory thalamus or auditory cortex. These findings suggest that individual performance is linked to nicotinic functions in specific brain regions, and further support a role for nAChRs in sensory‐cognitive function. Synapse, 2012. © 2011 Wiley Periodicals, Inc.
doi_str_mv 10.1002/syn.21530
format article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3292694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SYN21530</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3080-7f2caf5fca6fb8169ad13828503bd62bc7bff7a0aa0cee9ea9e89905d3d7307b3</originalsourceid><addsrcrecordid>eNpVkd1u1DAQRi1ERZfCBS-A_ACk9U8S21wg0apdqMqC6CLElTVxxhtD6qyctBCJh8d0YQVXnvHMObL8EfKMs2POmDgZ53gseCXZA7LgzOhCSFM_JAumtSrKUtWH5PE4fmWMSc7KR-RQCMGlLMWC_FwFN0whBkfB4TT3rhv6EJEmdLidhjTSEGmCifohYZMgd1OX2ybElnJ9UcTgMeJL-hF7yKIN_XC-puEGNrl-QeE2O6ANwybBtpvzRcYa7OAuDOkJOfDQj_j0z3lEPl2cr8_eFFfvl2_PXl8VQTLNCuWFA195B7VvNK8NtFxqoSsmm7YWjVON9woYAHOIBsGgNoZVrWyVZKqRR-TVzru9bW6wdRinBL3dpvzMNNsBgv1_EkNnN8OdlcKI2pRZ8PxfwZ78-4954WS38D30OO_nnNnfAdkckL0PyF5_Wd0XmSh2RBgn_LEnIH2ztZKqsp9XS3v67nJ5vT41tpa_AATKldI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nicotinic acetylcholine receptors in rat forebrain that bind 18F-nifene: Relating PET imaging, autoradiography, and behavior</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bieszczad, Kasia M. ; Kant, Ritu ; Constantinescu, Cristian C. ; Pandey, Suresh K. ; Kawai, Hideki D. ; Metherate, Raju ; Weinberger, Norman M. ; Mukherjee, Jogeshwar</creator><creatorcontrib>Bieszczad, Kasia M. ; Kant, Ritu ; Constantinescu, Cristian C. ; Pandey, Suresh K. ; Kawai, Hideki D. ; Metherate, Raju ; Weinberger, Norman M. ; Mukherjee, Jogeshwar</creatorcontrib><description>Nicotinic acetylcholine receptors (nAChRs) in the brain are important for cognitive function; however, their specific role in relevant brain regions remains unclear. In this study, we used the novel compound 18F‐nifene to examine the distribution of nAChRs in the rat forebrain, and for individual animals related the results to behavioral performance on an auditory‐cognitive task. We first show negligible binding of 18F‐nifene in mice lacking the β2 nAChR subunit, consistent with previous findings that 18F‐nifene binds to α4β2* nAChRs. We then examined the distribution of 18F‐nifene in rat using three methods: in vivo PET, ex vivo PET and autoradiography. Generally, 18F‐nifene labeled forebrain regions known to contain nAChRs, and the three methods produced similar relative binding among regions. Importantly, 18F‐nifene also labeled some white matter (myelinated axon) tracts, most prominently in the temporal subcortical region that contains the auditory thalamocortical pathway. Finally, we related 18F‐nifene binding in several forebrain regions to each animal's performance on an auditory‐cued, active avoidance task. The strongest correlations with performance after 14 days training were found for 18F‐nifene binding in the temporal subcortical white matter, subiculum, and medial frontal cortex (correlation coefficients, r &gt; 0.8); there was no correlation with binding in the auditory thalamus or auditory cortex. These findings suggest that individual performance is linked to nicotinic functions in specific brain regions, and further support a role for nAChRs in sensory‐cognitive function. Synapse, 2012. © 2011 Wiley Periodicals, Inc.</description><identifier>ISSN: 0887-4476</identifier><identifier>EISSN: 1098-2396</identifier><identifier>DOI: 10.1002/syn.21530</identifier><identifier>PMID: 22213342</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; auditory ; Autoradiography ; Avoidance Learning - physiology ; Cerebellum - diagnostic imaging ; Cerebellum - metabolism ; Corpus Striatum - diagnostic imaging ; Corpus Striatum - metabolism ; Fluorine Radioisotopes - pharmacokinetics ; Frontal Lobe - diagnostic imaging ; Frontal Lobe - metabolism ; Hippocampus - diagnostic imaging ; Hippocampus - metabolism ; learning ; memory ; Mice ; Mice, Knockout ; Nerve Fibers, Myelinated - diagnostic imaging ; Nerve Fibers, Myelinated - metabolism ; nicotine ; Positron-Emission Tomography ; prefrontal ; Prosencephalon - diagnostic imaging ; Prosencephalon - metabolism ; Pyridines - pharmacokinetics ; Pyrroles - pharmacokinetics ; Radiopharmaceuticals ; Rats ; Rats, Sprague-Dawley ; Receptors, Nicotinic - metabolism ; thalamocortical ; Thalamus - diagnostic imaging ; Thalamus - metabolism</subject><ispartof>Synapse (New York, N.Y.), 2012-05, Vol.66 (5), p.418-434</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22213342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bieszczad, Kasia M.</creatorcontrib><creatorcontrib>Kant, Ritu</creatorcontrib><creatorcontrib>Constantinescu, Cristian C.</creatorcontrib><creatorcontrib>Pandey, Suresh K.</creatorcontrib><creatorcontrib>Kawai, Hideki D.</creatorcontrib><creatorcontrib>Metherate, Raju</creatorcontrib><creatorcontrib>Weinberger, Norman M.</creatorcontrib><creatorcontrib>Mukherjee, Jogeshwar</creatorcontrib><title>Nicotinic acetylcholine receptors in rat forebrain that bind 18F-nifene: Relating PET imaging, autoradiography, and behavior</title><title>Synapse (New York, N.Y.)</title><addtitle>Synapse</addtitle><description>Nicotinic acetylcholine receptors (nAChRs) in the brain are important for cognitive function; however, their specific role in relevant brain regions remains unclear. In this study, we used the novel compound 18F‐nifene to examine the distribution of nAChRs in the rat forebrain, and for individual animals related the results to behavioral performance on an auditory‐cognitive task. We first show negligible binding of 18F‐nifene in mice lacking the β2 nAChR subunit, consistent with previous findings that 18F‐nifene binds to α4β2* nAChRs. We then examined the distribution of 18F‐nifene in rat using three methods: in vivo PET, ex vivo PET and autoradiography. Generally, 18F‐nifene labeled forebrain regions known to contain nAChRs, and the three methods produced similar relative binding among regions. Importantly, 18F‐nifene also labeled some white matter (myelinated axon) tracts, most prominently in the temporal subcortical region that contains the auditory thalamocortical pathway. Finally, we related 18F‐nifene binding in several forebrain regions to each animal's performance on an auditory‐cued, active avoidance task. The strongest correlations with performance after 14 days training were found for 18F‐nifene binding in the temporal subcortical white matter, subiculum, and medial frontal cortex (correlation coefficients, r &gt; 0.8); there was no correlation with binding in the auditory thalamus or auditory cortex. These findings suggest that individual performance is linked to nicotinic functions in specific brain regions, and further support a role for nAChRs in sensory‐cognitive function. Synapse, 2012. © 2011 Wiley Periodicals, Inc.</description><subject>Animals</subject><subject>auditory</subject><subject>Autoradiography</subject><subject>Avoidance Learning - physiology</subject><subject>Cerebellum - diagnostic imaging</subject><subject>Cerebellum - metabolism</subject><subject>Corpus Striatum - diagnostic imaging</subject><subject>Corpus Striatum - metabolism</subject><subject>Fluorine Radioisotopes - pharmacokinetics</subject><subject>Frontal Lobe - diagnostic imaging</subject><subject>Frontal Lobe - metabolism</subject><subject>Hippocampus - diagnostic imaging</subject><subject>Hippocampus - metabolism</subject><subject>learning</subject><subject>memory</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Nerve Fibers, Myelinated - diagnostic imaging</subject><subject>Nerve Fibers, Myelinated - metabolism</subject><subject>nicotine</subject><subject>Positron-Emission Tomography</subject><subject>prefrontal</subject><subject>Prosencephalon - diagnostic imaging</subject><subject>Prosencephalon - metabolism</subject><subject>Pyridines - pharmacokinetics</subject><subject>Pyrroles - pharmacokinetics</subject><subject>Radiopharmaceuticals</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Nicotinic - metabolism</subject><subject>thalamocortical</subject><subject>Thalamus - diagnostic imaging</subject><subject>Thalamus - metabolism</subject><issn>0887-4476</issn><issn>1098-2396</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkd1u1DAQRi1ERZfCBS-A_ACk9U8S21wg0apdqMqC6CLElTVxxhtD6qyctBCJh8d0YQVXnvHMObL8EfKMs2POmDgZ53gseCXZA7LgzOhCSFM_JAumtSrKUtWH5PE4fmWMSc7KR-RQCMGlLMWC_FwFN0whBkfB4TT3rhv6EJEmdLidhjTSEGmCifohYZMgd1OX2ybElnJ9UcTgMeJL-hF7yKIN_XC-puEGNrl-QeE2O6ANwybBtpvzRcYa7OAuDOkJOfDQj_j0z3lEPl2cr8_eFFfvl2_PXl8VQTLNCuWFA195B7VvNK8NtFxqoSsmm7YWjVON9woYAHOIBsGgNoZVrWyVZKqRR-TVzru9bW6wdRinBL3dpvzMNNsBgv1_EkNnN8OdlcKI2pRZ8PxfwZ78-4954WS38D30OO_nnNnfAdkckL0PyF5_Wd0XmSh2RBgn_LEnIH2ztZKqsp9XS3v67nJ5vT41tpa_AATKldI</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Bieszczad, Kasia M.</creator><creator>Kant, Ritu</creator><creator>Constantinescu, Cristian C.</creator><creator>Pandey, Suresh K.</creator><creator>Kawai, Hideki D.</creator><creator>Metherate, Raju</creator><creator>Weinberger, Norman M.</creator><creator>Mukherjee, Jogeshwar</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>201205</creationdate><title>Nicotinic acetylcholine receptors in rat forebrain that bind 18F-nifene: Relating PET imaging, autoradiography, and behavior</title><author>Bieszczad, Kasia M. ; Kant, Ritu ; Constantinescu, Cristian C. ; Pandey, Suresh K. ; Kawai, Hideki D. ; Metherate, Raju ; Weinberger, Norman M. ; Mukherjee, Jogeshwar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3080-7f2caf5fca6fb8169ad13828503bd62bc7bff7a0aa0cee9ea9e89905d3d7307b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>auditory</topic><topic>Autoradiography</topic><topic>Avoidance Learning - physiology</topic><topic>Cerebellum - diagnostic imaging</topic><topic>Cerebellum - metabolism</topic><topic>Corpus Striatum - diagnostic imaging</topic><topic>Corpus Striatum - metabolism</topic><topic>Fluorine Radioisotopes - pharmacokinetics</topic><topic>Frontal Lobe - diagnostic imaging</topic><topic>Frontal Lobe - metabolism</topic><topic>Hippocampus - diagnostic imaging</topic><topic>Hippocampus - metabolism</topic><topic>learning</topic><topic>memory</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Nerve Fibers, Myelinated - diagnostic imaging</topic><topic>Nerve Fibers, Myelinated - metabolism</topic><topic>nicotine</topic><topic>Positron-Emission Tomography</topic><topic>prefrontal</topic><topic>Prosencephalon - diagnostic imaging</topic><topic>Prosencephalon - metabolism</topic><topic>Pyridines - pharmacokinetics</topic><topic>Pyrroles - pharmacokinetics</topic><topic>Radiopharmaceuticals</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Nicotinic - metabolism</topic><topic>thalamocortical</topic><topic>Thalamus - diagnostic imaging</topic><topic>Thalamus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bieszczad, Kasia M.</creatorcontrib><creatorcontrib>Kant, Ritu</creatorcontrib><creatorcontrib>Constantinescu, Cristian C.</creatorcontrib><creatorcontrib>Pandey, Suresh K.</creatorcontrib><creatorcontrib>Kawai, Hideki D.</creatorcontrib><creatorcontrib>Metherate, Raju</creatorcontrib><creatorcontrib>Weinberger, Norman M.</creatorcontrib><creatorcontrib>Mukherjee, Jogeshwar</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Synapse (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bieszczad, Kasia M.</au><au>Kant, Ritu</au><au>Constantinescu, Cristian C.</au><au>Pandey, Suresh K.</au><au>Kawai, Hideki D.</au><au>Metherate, Raju</au><au>Weinberger, Norman M.</au><au>Mukherjee, Jogeshwar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nicotinic acetylcholine receptors in rat forebrain that bind 18F-nifene: Relating PET imaging, autoradiography, and behavior</atitle><jtitle>Synapse (New York, N.Y.)</jtitle><addtitle>Synapse</addtitle><date>2012-05</date><risdate>2012</risdate><volume>66</volume><issue>5</issue><spage>418</spage><epage>434</epage><pages>418-434</pages><issn>0887-4476</issn><eissn>1098-2396</eissn><abstract>Nicotinic acetylcholine receptors (nAChRs) in the brain are important for cognitive function; however, their specific role in relevant brain regions remains unclear. In this study, we used the novel compound 18F‐nifene to examine the distribution of nAChRs in the rat forebrain, and for individual animals related the results to behavioral performance on an auditory‐cognitive task. We first show negligible binding of 18F‐nifene in mice lacking the β2 nAChR subunit, consistent with previous findings that 18F‐nifene binds to α4β2* nAChRs. We then examined the distribution of 18F‐nifene in rat using three methods: in vivo PET, ex vivo PET and autoradiography. Generally, 18F‐nifene labeled forebrain regions known to contain nAChRs, and the three methods produced similar relative binding among regions. Importantly, 18F‐nifene also labeled some white matter (myelinated axon) tracts, most prominently in the temporal subcortical region that contains the auditory thalamocortical pathway. Finally, we related 18F‐nifene binding in several forebrain regions to each animal's performance on an auditory‐cued, active avoidance task. The strongest correlations with performance after 14 days training were found for 18F‐nifene binding in the temporal subcortical white matter, subiculum, and medial frontal cortex (correlation coefficients, r &gt; 0.8); there was no correlation with binding in the auditory thalamus or auditory cortex. These findings suggest that individual performance is linked to nicotinic functions in specific brain regions, and further support a role for nAChRs in sensory‐cognitive function. Synapse, 2012. © 2011 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22213342</pmid><doi>10.1002/syn.21530</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-4476
ispartof Synapse (New York, N.Y.), 2012-05, Vol.66 (5), p.418-434
issn 0887-4476
1098-2396
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3292694
source Wiley-Blackwell Read & Publish Collection
subjects Animals
auditory
Autoradiography
Avoidance Learning - physiology
Cerebellum - diagnostic imaging
Cerebellum - metabolism
Corpus Striatum - diagnostic imaging
Corpus Striatum - metabolism
Fluorine Radioisotopes - pharmacokinetics
Frontal Lobe - diagnostic imaging
Frontal Lobe - metabolism
Hippocampus - diagnostic imaging
Hippocampus - metabolism
learning
memory
Mice
Mice, Knockout
Nerve Fibers, Myelinated - diagnostic imaging
Nerve Fibers, Myelinated - metabolism
nicotine
Positron-Emission Tomography
prefrontal
Prosencephalon - diagnostic imaging
Prosencephalon - metabolism
Pyridines - pharmacokinetics
Pyrroles - pharmacokinetics
Radiopharmaceuticals
Rats
Rats, Sprague-Dawley
Receptors, Nicotinic - metabolism
thalamocortical
Thalamus - diagnostic imaging
Thalamus - metabolism
title Nicotinic acetylcholine receptors in rat forebrain that bind 18F-nifene: Relating PET imaging, autoradiography, and behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nicotinic%20acetylcholine%20receptors%20in%20rat%20forebrain%20that%20bind%2018F-nifene:%20Relating%20PET%20imaging,%20autoradiography,%20and%20behavior&rft.jtitle=Synapse%20(New%20York,%20N.Y.)&rft.au=Bieszczad,%20Kasia%20M.&rft.date=2012-05&rft.volume=66&rft.issue=5&rft.spage=418&rft.epage=434&rft.pages=418-434&rft.issn=0887-4476&rft.eissn=1098-2396&rft_id=info:doi/10.1002/syn.21530&rft_dat=%3Cwiley_pubme%3ESYN21530%3C/wiley_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i3080-7f2caf5fca6fb8169ad13828503bd62bc7bff7a0aa0cee9ea9e89905d3d7307b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/22213342&rfr_iscdi=true