Loading…

Allosteric Modulation of Ca2+ flux in Ligand-gated Cation Channel (P2X4) by Actions on Lateral Portals

Human P2X receptors are a family of seven ATP-gated ion channels that transport Na+, K+, and Ca2+ across cell surface membranes. The P2X4 receptor is unique among family members in its sensitivity to the macrocyclic lactone, ivermectin, which allosterically modulates both ion conduction and channel...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2012-03, Vol.287 (10), p.7594-7602
Main Authors: Samways, Damien S.K., Khakh, Baljit S., Egan, Terrance M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-ac681c81608118c5a456b3278d392a80ff2fd5c89cd0b6711d31c5ca0d9718c3
cites cdi_FETCH-LOGICAL-c438t-ac681c81608118c5a456b3278d392a80ff2fd5c89cd0b6711d31c5ca0d9718c3
container_end_page 7602
container_issue 10
container_start_page 7594
container_title The Journal of biological chemistry
container_volume 287
creator Samways, Damien S.K.
Khakh, Baljit S.
Egan, Terrance M.
description Human P2X receptors are a family of seven ATP-gated ion channels that transport Na+, K+, and Ca2+ across cell surface membranes. The P2X4 receptor is unique among family members in its sensitivity to the macrocyclic lactone, ivermectin, which allosterically modulates both ion conduction and channel gating. In this paper we show that removing the fixed negative charge of a single acidic amino acid (Glu51) in the lateral entrance to the transmembrane pore markedly attenuates the effect of ivermectin on Ca2+ current and channel gating. Ca2+ entry through P2X4 receptors is known to trigger downstream signaling pathways in microglia. Our experiments show that the lateral portals could present a novel target for drugs in the treatment of microglia-associated disease including neuropathic pain. Ca2+ currents of ligand-gated ion channels are essential to cell signaling. We show that the Ca2+ currents of P2X4 channels are subject to allosteric modulation. The fixed negative charge of a single amino acid is required for the allosteric effects of ivermectin on permeability, flux, and current deactivation. Allosteric modulators may provide therapeutic relief from symptoms of diseases such as peripheral neuropathy and hypertension.
doi_str_mv 10.1074/jbc.M111.322461
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3293559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820610730</els_id><sourcerecordid>22219189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ac681c81608118c5a456b3278d392a80ff2fd5c89cd0b6711d31c5ca0d9718c3</originalsourceid><addsrcrecordid>eNp1kL9PAjEYhhujUURnN9NRYw76tXdHu5gQ4q8EIgMDW9Nre1BzXE3vIPLfW0SJDnb5hvf53rYPQldAekAGaf-t0L0JAPQYpWkOR6gDhLOEZTA_Rh1CKCSCZvwMnTfNG4knFXCKziilIICLDiqHVeWb1gan8cSbdaVa52vsSzxS9A6X1foDuxqP3ULVJlmo1pqYfDGjpaprW-GbKZ2nt7jY4qHeBQ2O4TiSQVV46kOrquYCnZRx2Mvv2UWzx4fZ6DkZvz69jIbjRKeMt4nSOQfNISccgOtMpVleMDrghgmqOClLWppMc6ENKfIBgGGgM62IEYPIsy6639e-r4uVNdrWbXyEfA9upcJWeuXk36R2S7nwG8moYFkmYkF_X6CDb5pgy8MuELkzLqNxuTMu98bjxvXvKw_8j-IIiD1g4783zgbZaGdrbY0LVrfSePdv-Se1gY_M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Allosteric Modulation of Ca2+ flux in Ligand-gated Cation Channel (P2X4) by Actions on Lateral Portals</title><source>PubMed Central (Open access)</source><source>ScienceDirect®</source><creator>Samways, Damien S.K. ; Khakh, Baljit S. ; Egan, Terrance M.</creator><creatorcontrib>Samways, Damien S.K. ; Khakh, Baljit S. ; Egan, Terrance M.</creatorcontrib><description>Human P2X receptors are a family of seven ATP-gated ion channels that transport Na+, K+, and Ca2+ across cell surface membranes. The P2X4 receptor is unique among family members in its sensitivity to the macrocyclic lactone, ivermectin, which allosterically modulates both ion conduction and channel gating. In this paper we show that removing the fixed negative charge of a single acidic amino acid (Glu51) in the lateral entrance to the transmembrane pore markedly attenuates the effect of ivermectin on Ca2+ current and channel gating. Ca2+ entry through P2X4 receptors is known to trigger downstream signaling pathways in microglia. Our experiments show that the lateral portals could present a novel target for drugs in the treatment of microglia-associated disease including neuropathic pain. Ca2+ currents of ligand-gated ion channels are essential to cell signaling. We show that the Ca2+ currents of P2X4 channels are subject to allosteric modulation. The fixed negative charge of a single amino acid is required for the allosteric effects of ivermectin on permeability, flux, and current deactivation. Allosteric modulators may provide therapeutic relief from symptoms of diseases such as peripheral neuropathy and hypertension.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.322461</identifier><identifier>PMID: 22219189</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Allosteric Regulation - drug effects ; Allosteric Regulation - genetics ; Amino Acid Substitution ; Antiparasitic Agents - pharmacology ; ATP ; Calcium - metabolism ; Calcium Signaling ; Cell Line, Transformed ; Fenestration ; Fractional Calcium Current ; Humans ; Ion Channel Gating ; Ion Channels ; Ion Transport - drug effects ; Ion Transport - genetics ; Ivermectin ; Ivermectin - pharmacology ; Microglia ; Microglia - metabolism ; Microglia - pathology ; Molecular Biophysics ; Mutation, Missense ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neuralgia - drug therapy ; Neuralgia - metabolism ; Neuralgia - pathology ; Pf ; Purinergic Receptor ; Receptors, Purinergic P2X4 - genetics ; Receptors, Purinergic P2X4 - metabolism ; Signal Transduction - drug effects ; Signal Transduction - genetics</subject><ispartof>The Journal of biological chemistry, 2012-03, Vol.287 (10), p.7594-7602</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ac681c81608118c5a456b3278d392a80ff2fd5c89cd0b6711d31c5ca0d9718c3</citedby><cites>FETCH-LOGICAL-c438t-ac681c81608118c5a456b3278d392a80ff2fd5c89cd0b6711d31c5ca0d9718c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293559/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820610730$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22219189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samways, Damien S.K.</creatorcontrib><creatorcontrib>Khakh, Baljit S.</creatorcontrib><creatorcontrib>Egan, Terrance M.</creatorcontrib><title>Allosteric Modulation of Ca2+ flux in Ligand-gated Cation Channel (P2X4) by Actions on Lateral Portals</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Human P2X receptors are a family of seven ATP-gated ion channels that transport Na+, K+, and Ca2+ across cell surface membranes. The P2X4 receptor is unique among family members in its sensitivity to the macrocyclic lactone, ivermectin, which allosterically modulates both ion conduction and channel gating. In this paper we show that removing the fixed negative charge of a single acidic amino acid (Glu51) in the lateral entrance to the transmembrane pore markedly attenuates the effect of ivermectin on Ca2+ current and channel gating. Ca2+ entry through P2X4 receptors is known to trigger downstream signaling pathways in microglia. Our experiments show that the lateral portals could present a novel target for drugs in the treatment of microglia-associated disease including neuropathic pain. Ca2+ currents of ligand-gated ion channels are essential to cell signaling. We show that the Ca2+ currents of P2X4 channels are subject to allosteric modulation. The fixed negative charge of a single amino acid is required for the allosteric effects of ivermectin on permeability, flux, and current deactivation. Allosteric modulators may provide therapeutic relief from symptoms of diseases such as peripheral neuropathy and hypertension.</description><subject>Allosteric Regulation - drug effects</subject><subject>Allosteric Regulation - genetics</subject><subject>Amino Acid Substitution</subject><subject>Antiparasitic Agents - pharmacology</subject><subject>ATP</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling</subject><subject>Cell Line, Transformed</subject><subject>Fenestration</subject><subject>Fractional Calcium Current</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>Ion Channels</subject><subject>Ion Transport - drug effects</subject><subject>Ion Transport - genetics</subject><subject>Ivermectin</subject><subject>Ivermectin - pharmacology</subject><subject>Microglia</subject><subject>Microglia - metabolism</subject><subject>Microglia - pathology</subject><subject>Molecular Biophysics</subject><subject>Mutation, Missense</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neuralgia - drug therapy</subject><subject>Neuralgia - metabolism</subject><subject>Neuralgia - pathology</subject><subject>Pf</subject><subject>Purinergic Receptor</subject><subject>Receptors, Purinergic P2X4 - genetics</subject><subject>Receptors, Purinergic P2X4 - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kL9PAjEYhhujUURnN9NRYw76tXdHu5gQ4q8EIgMDW9Nre1BzXE3vIPLfW0SJDnb5hvf53rYPQldAekAGaf-t0L0JAPQYpWkOR6gDhLOEZTA_Rh1CKCSCZvwMnTfNG4knFXCKziilIICLDiqHVeWb1gan8cSbdaVa52vsSzxS9A6X1foDuxqP3ULVJlmo1pqYfDGjpaprW-GbKZ2nt7jY4qHeBQ2O4TiSQVV46kOrquYCnZRx2Mvv2UWzx4fZ6DkZvz69jIbjRKeMt4nSOQfNISccgOtMpVleMDrghgmqOClLWppMc6ENKfIBgGGgM62IEYPIsy6639e-r4uVNdrWbXyEfA9upcJWeuXk36R2S7nwG8moYFkmYkF_X6CDb5pgy8MuELkzLqNxuTMu98bjxvXvKw_8j-IIiD1g4783zgbZaGdrbY0LVrfSePdv-Se1gY_M</recordid><startdate>20120302</startdate><enddate>20120302</enddate><creator>Samways, Damien S.K.</creator><creator>Khakh, Baljit S.</creator><creator>Egan, Terrance M.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20120302</creationdate><title>Allosteric Modulation of Ca2+ flux in Ligand-gated Cation Channel (P2X4) by Actions on Lateral Portals</title><author>Samways, Damien S.K. ; Khakh, Baljit S. ; Egan, Terrance M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ac681c81608118c5a456b3278d392a80ff2fd5c89cd0b6711d31c5ca0d9718c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Allosteric Regulation - drug effects</topic><topic>Allosteric Regulation - genetics</topic><topic>Amino Acid Substitution</topic><topic>Antiparasitic Agents - pharmacology</topic><topic>ATP</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling</topic><topic>Cell Line, Transformed</topic><topic>Fenestration</topic><topic>Fractional Calcium Current</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>Ion Channels</topic><topic>Ion Transport - drug effects</topic><topic>Ion Transport - genetics</topic><topic>Ivermectin</topic><topic>Ivermectin - pharmacology</topic><topic>Microglia</topic><topic>Microglia - metabolism</topic><topic>Microglia - pathology</topic><topic>Molecular Biophysics</topic><topic>Mutation, Missense</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neuralgia - drug therapy</topic><topic>Neuralgia - metabolism</topic><topic>Neuralgia - pathology</topic><topic>Pf</topic><topic>Purinergic Receptor</topic><topic>Receptors, Purinergic P2X4 - genetics</topic><topic>Receptors, Purinergic P2X4 - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samways, Damien S.K.</creatorcontrib><creatorcontrib>Khakh, Baljit S.</creatorcontrib><creatorcontrib>Egan, Terrance M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samways, Damien S.K.</au><au>Khakh, Baljit S.</au><au>Egan, Terrance M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allosteric Modulation of Ca2+ flux in Ligand-gated Cation Channel (P2X4) by Actions on Lateral Portals</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-03-02</date><risdate>2012</risdate><volume>287</volume><issue>10</issue><spage>7594</spage><epage>7602</epage><pages>7594-7602</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Human P2X receptors are a family of seven ATP-gated ion channels that transport Na+, K+, and Ca2+ across cell surface membranes. The P2X4 receptor is unique among family members in its sensitivity to the macrocyclic lactone, ivermectin, which allosterically modulates both ion conduction and channel gating. In this paper we show that removing the fixed negative charge of a single acidic amino acid (Glu51) in the lateral entrance to the transmembrane pore markedly attenuates the effect of ivermectin on Ca2+ current and channel gating. Ca2+ entry through P2X4 receptors is known to trigger downstream signaling pathways in microglia. Our experiments show that the lateral portals could present a novel target for drugs in the treatment of microglia-associated disease including neuropathic pain. Ca2+ currents of ligand-gated ion channels are essential to cell signaling. We show that the Ca2+ currents of P2X4 channels are subject to allosteric modulation. The fixed negative charge of a single amino acid is required for the allosteric effects of ivermectin on permeability, flux, and current deactivation. Allosteric modulators may provide therapeutic relief from symptoms of diseases such as peripheral neuropathy and hypertension.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22219189</pmid><doi>10.1074/jbc.M111.322461</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2012-03, Vol.287 (10), p.7594-7602
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3293559
source PubMed Central (Open access); ScienceDirect®
subjects Allosteric Regulation - drug effects
Allosteric Regulation - genetics
Amino Acid Substitution
Antiparasitic Agents - pharmacology
ATP
Calcium - metabolism
Calcium Signaling
Cell Line, Transformed
Fenestration
Fractional Calcium Current
Humans
Ion Channel Gating
Ion Channels
Ion Transport - drug effects
Ion Transport - genetics
Ivermectin
Ivermectin - pharmacology
Microglia
Microglia - metabolism
Microglia - pathology
Molecular Biophysics
Mutation, Missense
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neuralgia - drug therapy
Neuralgia - metabolism
Neuralgia - pathology
Pf
Purinergic Receptor
Receptors, Purinergic P2X4 - genetics
Receptors, Purinergic P2X4 - metabolism
Signal Transduction - drug effects
Signal Transduction - genetics
title Allosteric Modulation of Ca2+ flux in Ligand-gated Cation Channel (P2X4) by Actions on Lateral Portals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allosteric%20Modulation%20of%20Ca2+%20flux%20in%20Ligand-gated%20Cation%20Channel%20(P2X4)%20by%20Actions%20on%20Lateral%20Portals&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Samways,%20Damien%20S.K.&rft.date=2012-03-02&rft.volume=287&rft.issue=10&rft.spage=7594&rft.epage=7602&rft.pages=7594-7602&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.322461&rft_dat=%3Cpubmed_cross%3E22219189%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-ac681c81608118c5a456b3278d392a80ff2fd5c89cd0b6711d31c5ca0d9718c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/22219189&rfr_iscdi=true