Loading…

Selective mGluR1 Antagonist EMQMCM Inhibits the Kainate-Induced Excitotoxicity in Primary Neuronal Cultures and in the Rat Hippocampus

Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-metho...

Full description

Saved in:
Bibliographic Details
Published in:Neurotoxicity research 2012-05, Vol.21 (4), p.379-392
Main Authors: Śmiałowska, Maria, Gołembiowska, Krystyna, Kajta, Małgorzata, Zięba, Barbara, Dziubina, Anna, Domin, Helena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-9688287fc7ef78d4a06ef52f39262cc9be9b571ee9ecf619a80bf91c15544b053
cites cdi_FETCH-LOGICAL-c474t-9688287fc7ef78d4a06ef52f39262cc9be9b571ee9ecf619a80bf91c15544b053
container_end_page 392
container_issue 4
container_start_page 379
container_title Neurotoxicity research
container_volume 21
creator Śmiałowska, Maria
Gołembiowska, Krystyna
Kajta, Małgorzata
Zięba, Barbara
Dziubina, Anna
Domin, Helena
description Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150 μM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1–100 μM) added 30 min to 6 h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5–10 nmol/1 μl) injected into the dorsal hippocampus 30 min, 1 h, or 3 h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100 μM) significantly increased γ-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30 min to 6 h). The role of enhanced GABAergic transmission in the neuroprotection is postulated.
doi_str_mv 10.1007/s12640-011-9293-4
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3296950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017976285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9688287fc7ef78d4a06ef52f39262cc9be9b571ee9ecf619a80bf91c15544b053</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEoqXwA7ggH7kEbMex4wtStVraVbt8FDhbjjPZdZW1U39U7R_gdzdRSgUXTmNp3nlm5Kco3hL8gWAsPkZCOcMlJqSUVFYle1YcEyZ4WdWUPZ_emMqyYbQ5Kl7FeI0xJTUXL4sjSgljFePHxe8fMIBJ9hbQ4WzIVwSduqR33tmY0Hr7fbvaoo3b29amiNIe0IW2TicoN67LBjq0vjM2-eTv7FTvkXXoW7AHHe7RF8jBOz2gVR5SDhCRdt0cmDFXOqFzO47e6MOY4-viRa-HCG8e60nx6_P65-q8vPx6tlmdXpaGCZZKyZuGNqI3AnrRdExjDn1N-0pSTo2RLci2FgRAguk5kbrBbS-JIXXNWIvr6qT4tHDH3B6gM-BS0IMal5OV11b923F2r3b-VlVUclnjCfD-ERD8TYaY1MFGA8OgHfgcFcFESMFpM-8iS9QEH2OA_mkNwWr2pxZ_avKnZn-KTTPv_r7vaeKPsClAl0CcWm4HQV37HKZfjv-hPgDCfKh_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017976285</pqid></control><display><type>article</type><title>Selective mGluR1 Antagonist EMQMCM Inhibits the Kainate-Induced Excitotoxicity in Primary Neuronal Cultures and in the Rat Hippocampus</title><source>Springer Nature</source><creator>Śmiałowska, Maria ; Gołembiowska, Krystyna ; Kajta, Małgorzata ; Zięba, Barbara ; Dziubina, Anna ; Domin, Helena</creator><creatorcontrib>Śmiałowska, Maria ; Gołembiowska, Krystyna ; Kajta, Małgorzata ; Zięba, Barbara ; Dziubina, Anna ; Domin, Helena</creatorcontrib><description>Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150 μM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1–100 μM) added 30 min to 6 h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5–10 nmol/1 μl) injected into the dorsal hippocampus 30 min, 1 h, or 3 h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100 μM) significantly increased γ-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30 min to 6 h). The role of enhanced GABAergic transmission in the neuroprotection is postulated.</description><identifier>ISSN: 1029-8428</identifier><identifier>EISSN: 1476-3524</identifier><identifier>DOI: 10.1007/s12640-011-9293-4</identifier><identifier>PMID: 22144346</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Animals ; Apoptosis ; Apoptosis - drug effects ; Biomedical and Life Sciences ; Biomedicine ; Caspase 3 - metabolism ; Caspase-3 ; Cell Biology ; Cell culture ; Cerebral Cortex - drug effects ; Cerebral Cortex - pathology ; Degeneration ; Dose-Response Relationship, Drug ; Drug Interactions ; Enumeration ; Excitotoxicity ; gamma -Aminobutyric acid ; gamma-Aminobutyric Acid - metabolism ; Glutamatergic transmission ; Glutamic acid ; Glutamic Acid - metabolism ; Glutamic acid receptors (metabotropic) ; Hippocampus ; Hippocampus - drug effects ; Hippocampus - pathology ; Kainic Acid - administration &amp; dosage ; Kainic Acid - antagonists &amp; inhibitors ; Kainic Acid - toxicity ; L-Lactate dehydrogenase ; L-Lactate Dehydrogenase - metabolism ; Male ; Metabotropic receptors ; Mice ; Microdialysis ; Microinjections ; Nerve Degeneration - chemically induced ; Nerve Degeneration - pathology ; Neurobiology ; Neurochemistry ; Neurology ; Neurons ; Neuroprotection ; Neuroprotective Agents - pharmacology ; Neurosciences ; Neurotoxicity ; Neurotransmission ; Pharmacology/Toxicology ; Primary Cell Culture ; Quinolines - administration &amp; dosage ; Quinolines - pharmacology ; Rats ; Rats, Wistar</subject><ispartof>Neurotoxicity research, 2012-05, Vol.21 (4), p.379-392</ispartof><rights>The Author(s) 2011</rights><rights>The Author(s) 2011. This article is published with open access at Springerlink.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9688287fc7ef78d4a06ef52f39262cc9be9b571ee9ecf619a80bf91c15544b053</citedby><cites>FETCH-LOGICAL-c474t-9688287fc7ef78d4a06ef52f39262cc9be9b571ee9ecf619a80bf91c15544b053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22144346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Śmiałowska, Maria</creatorcontrib><creatorcontrib>Gołembiowska, Krystyna</creatorcontrib><creatorcontrib>Kajta, Małgorzata</creatorcontrib><creatorcontrib>Zięba, Barbara</creatorcontrib><creatorcontrib>Dziubina, Anna</creatorcontrib><creatorcontrib>Domin, Helena</creatorcontrib><title>Selective mGluR1 Antagonist EMQMCM Inhibits the Kainate-Induced Excitotoxicity in Primary Neuronal Cultures and in the Rat Hippocampus</title><title>Neurotoxicity research</title><addtitle>Neurotox Res</addtitle><addtitle>Neurotox Res</addtitle><description>Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150 μM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1–100 μM) added 30 min to 6 h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5–10 nmol/1 μl) injected into the dorsal hippocampus 30 min, 1 h, or 3 h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100 μM) significantly increased γ-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30 min to 6 h). The role of enhanced GABAergic transmission in the neuroprotection is postulated.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase-3</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Cerebral Cortex - drug effects</subject><subject>Cerebral Cortex - pathology</subject><subject>Degeneration</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Interactions</subject><subject>Enumeration</subject><subject>Excitotoxicity</subject><subject>gamma -Aminobutyric acid</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Glutamatergic transmission</subject><subject>Glutamic acid</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamic acid receptors (metabotropic)</subject><subject>Hippocampus</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - pathology</subject><subject>Kainic Acid - administration &amp; dosage</subject><subject>Kainic Acid - antagonists &amp; inhibitors</subject><subject>Kainic Acid - toxicity</subject><subject>L-Lactate dehydrogenase</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>Male</subject><subject>Metabotropic receptors</subject><subject>Mice</subject><subject>Microdialysis</subject><subject>Microinjections</subject><subject>Nerve Degeneration - chemically induced</subject><subject>Nerve Degeneration - pathology</subject><subject>Neurobiology</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neuroprotection</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Neurosciences</subject><subject>Neurotoxicity</subject><subject>Neurotransmission</subject><subject>Pharmacology/Toxicology</subject><subject>Primary Cell Culture</subject><subject>Quinolines - administration &amp; dosage</subject><subject>Quinolines - pharmacology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><issn>1029-8428</issn><issn>1476-3524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEoqXwA7ggH7kEbMex4wtStVraVbt8FDhbjjPZdZW1U39U7R_gdzdRSgUXTmNp3nlm5Kco3hL8gWAsPkZCOcMlJqSUVFYle1YcEyZ4WdWUPZ_emMqyYbQ5Kl7FeI0xJTUXL4sjSgljFePHxe8fMIBJ9hbQ4WzIVwSduqR33tmY0Hr7fbvaoo3b29amiNIe0IW2TicoN67LBjq0vjM2-eTv7FTvkXXoW7AHHe7RF8jBOz2gVR5SDhCRdt0cmDFXOqFzO47e6MOY4-viRa-HCG8e60nx6_P65-q8vPx6tlmdXpaGCZZKyZuGNqI3AnrRdExjDn1N-0pSTo2RLci2FgRAguk5kbrBbS-JIXXNWIvr6qT4tHDH3B6gM-BS0IMal5OV11b923F2r3b-VlVUclnjCfD-ERD8TYaY1MFGA8OgHfgcFcFESMFpM-8iS9QEH2OA_mkNwWr2pxZ_avKnZn-KTTPv_r7vaeKPsClAl0CcWm4HQV37HKZfjv-hPgDCfKh_</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Śmiałowska, Maria</creator><creator>Gołembiowska, Krystyna</creator><creator>Kajta, Małgorzata</creator><creator>Zięba, Barbara</creator><creator>Dziubina, Anna</creator><creator>Domin, Helena</creator><general>Springer-Verlag</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20120501</creationdate><title>Selective mGluR1 Antagonist EMQMCM Inhibits the Kainate-Induced Excitotoxicity in Primary Neuronal Cultures and in the Rat Hippocampus</title><author>Śmiałowska, Maria ; Gołembiowska, Krystyna ; Kajta, Małgorzata ; Zięba, Barbara ; Dziubina, Anna ; Domin, Helena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9688287fc7ef78d4a06ef52f39262cc9be9b571ee9ecf619a80bf91c15544b053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase-3</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Cerebral Cortex - drug effects</topic><topic>Cerebral Cortex - pathology</topic><topic>Degeneration</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Interactions</topic><topic>Enumeration</topic><topic>Excitotoxicity</topic><topic>gamma -Aminobutyric acid</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Glutamatergic transmission</topic><topic>Glutamic acid</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamic acid receptors (metabotropic)</topic><topic>Hippocampus</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - pathology</topic><topic>Kainic Acid - administration &amp; dosage</topic><topic>Kainic Acid - antagonists &amp; inhibitors</topic><topic>Kainic Acid - toxicity</topic><topic>L-Lactate dehydrogenase</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>Male</topic><topic>Metabotropic receptors</topic><topic>Mice</topic><topic>Microdialysis</topic><topic>Microinjections</topic><topic>Nerve Degeneration - chemically induced</topic><topic>Nerve Degeneration - pathology</topic><topic>Neurobiology</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neuroprotection</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Neurosciences</topic><topic>Neurotoxicity</topic><topic>Neurotransmission</topic><topic>Pharmacology/Toxicology</topic><topic>Primary Cell Culture</topic><topic>Quinolines - administration &amp; dosage</topic><topic>Quinolines - pharmacology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Śmiałowska, Maria</creatorcontrib><creatorcontrib>Gołembiowska, Krystyna</creatorcontrib><creatorcontrib>Kajta, Małgorzata</creatorcontrib><creatorcontrib>Zięba, Barbara</creatorcontrib><creatorcontrib>Dziubina, Anna</creatorcontrib><creatorcontrib>Domin, Helena</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurotoxicity research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Śmiałowska, Maria</au><au>Gołembiowska, Krystyna</au><au>Kajta, Małgorzata</au><au>Zięba, Barbara</au><au>Dziubina, Anna</au><au>Domin, Helena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective mGluR1 Antagonist EMQMCM Inhibits the Kainate-Induced Excitotoxicity in Primary Neuronal Cultures and in the Rat Hippocampus</atitle><jtitle>Neurotoxicity research</jtitle><stitle>Neurotox Res</stitle><addtitle>Neurotox Res</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>21</volume><issue>4</issue><spage>379</spage><epage>392</epage><pages>379-392</pages><issn>1029-8428</issn><eissn>1476-3524</eissn><abstract>Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150 μM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1–100 μM) added 30 min to 6 h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5–10 nmol/1 μl) injected into the dorsal hippocampus 30 min, 1 h, or 3 h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100 μM) significantly increased γ-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30 min to 6 h). The role of enhanced GABAergic transmission in the neuroprotection is postulated.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>22144346</pmid><doi>10.1007/s12640-011-9293-4</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8428
ispartof Neurotoxicity research, 2012-05, Vol.21 (4), p.379-392
issn 1029-8428
1476-3524
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3296950
source Springer Nature
subjects Animals
Apoptosis
Apoptosis - drug effects
Biomedical and Life Sciences
Biomedicine
Caspase 3 - metabolism
Caspase-3
Cell Biology
Cell culture
Cerebral Cortex - drug effects
Cerebral Cortex - pathology
Degeneration
Dose-Response Relationship, Drug
Drug Interactions
Enumeration
Excitotoxicity
gamma -Aminobutyric acid
gamma-Aminobutyric Acid - metabolism
Glutamatergic transmission
Glutamic acid
Glutamic Acid - metabolism
Glutamic acid receptors (metabotropic)
Hippocampus
Hippocampus - drug effects
Hippocampus - pathology
Kainic Acid - administration & dosage
Kainic Acid - antagonists & inhibitors
Kainic Acid - toxicity
L-Lactate dehydrogenase
L-Lactate Dehydrogenase - metabolism
Male
Metabotropic receptors
Mice
Microdialysis
Microinjections
Nerve Degeneration - chemically induced
Nerve Degeneration - pathology
Neurobiology
Neurochemistry
Neurology
Neurons
Neuroprotection
Neuroprotective Agents - pharmacology
Neurosciences
Neurotoxicity
Neurotransmission
Pharmacology/Toxicology
Primary Cell Culture
Quinolines - administration & dosage
Quinolines - pharmacology
Rats
Rats, Wistar
title Selective mGluR1 Antagonist EMQMCM Inhibits the Kainate-Induced Excitotoxicity in Primary Neuronal Cultures and in the Rat Hippocampus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20mGluR1%20Antagonist%20EMQMCM%20Inhibits%20the%20Kainate-Induced%20Excitotoxicity%20in%20Primary%20Neuronal%20Cultures%20and%20in%20the%20Rat%20Hippocampus&rft.jtitle=Neurotoxicity%20research&rft.au=%C5%9Amia%C5%82owska,%20Maria&rft.date=2012-05-01&rft.volume=21&rft.issue=4&rft.spage=379&rft.epage=392&rft.pages=379-392&rft.issn=1029-8428&rft.eissn=1476-3524&rft_id=info:doi/10.1007/s12640-011-9293-4&rft_dat=%3Cproquest_pubme%3E1017976285%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-9688287fc7ef78d4a06ef52f39262cc9be9b571ee9ecf619a80bf91c15544b053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1017976285&rft_id=info:pmid/22144346&rfr_iscdi=true