Loading…
Intermembrane Docking Reactions Are Regulated by Membrane Curvature
The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curva...
Saved in:
Published in: | Biophysical journal 2011-12, Vol.101 (11), p.2693-2703 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c534t-4407e2a5df1fa44d80b5f5daeea88a550c27c89af6049d676e013fe8a69dc5b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c534t-4407e2a5df1fa44d80b5f5daeea88a550c27c89af6049d676e013fe8a69dc5b33 |
container_end_page | 2703 |
container_issue | 11 |
container_start_page | 2693 |
container_title | Biophysical journal |
container_volume | 101 |
creator | Kunding, Andreas H. Mortensen, Michael W. Christensen, Sune M. Bhatia, Vikram K. Makarov, Ivan Metzler, Ralf Stamou, Dimitrios |
description | The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle–vesicle pairs of different diameter (30–200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30–60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2–10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes. |
doi_str_mv | 10.1016/j.bpj.2011.09.059 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3297791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349511012380</els_id><sourcerecordid>917160998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-4407e2a5df1fa44d80b5f5daeea88a550c27c89af6049d676e013fe8a69dc5b33</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhB3CBiAtcEmYS24lVCalavioVIQE9W44zWRyy8WInK_Xf49W2FXDoaWTNM69m_DD2HKFAQPl2KNrdUJSAWIAqQKgHbIWClzlAIx-yFQDIvOJKnLAnMQ4AWArAx-ykLEuJIJoVW19MM4UtbdtgJsree_vLTZvsGxk7Oz_F7DxQem2W0czUZe119uWWXS9hb-Yl0FP2qDdjpGc39ZRdffzwY_05v_z66WJ9fplbUfE55xxqKo3oeuwN510DrehFZ4hM0xghwJa1bZTpJXDVyVoSYNVTY6TqrGir6pS9O-bulnZLnaVpDmbUu-C2Jlxrb5z-tzO5n3rj97oqVV0rTAGvbwKC_71QnPXWRUvjmM7xS9QKa5SgVJPIN_eSyCUXoLBRCX31Hzr4JUzpI1IeiiRKHSA8Qjb4GAP1d1sj6INLPejkUh9calA6uUwzL_4-927iVl4CXh6B3nhtNsFFffU9JYgkGkuseSLOjgQlLXtHQUfraLLUuUB21p139yzwB7nFuFM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911510199</pqid></control><display><type>article</type><title>Intermembrane Docking Reactions Are Regulated by Membrane Curvature</title><source>PubMed Central</source><creator>Kunding, Andreas H. ; Mortensen, Michael W. ; Christensen, Sune M. ; Bhatia, Vikram K. ; Makarov, Ivan ; Metzler, Ralf ; Stamou, Dimitrios</creator><creatorcontrib>Kunding, Andreas H. ; Mortensen, Michael W. ; Christensen, Sune M. ; Bhatia, Vikram K. ; Makarov, Ivan ; Metzler, Ralf ; Stamou, Dimitrios</creatorcontrib><description>The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle–vesicle pairs of different diameter (30–200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30–60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2–10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2011.09.059</identifier><identifier>PMID: 22261058</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Avidin - metabolism ; Calcium ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; cell membranes ; Eukaryotes ; fluorescence microscopy ; Genotype & phenotype ; Kinetics ; Ligands ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Membrane ; Membrane Fusion ; membrane proteins ; Membranes ; Microscopy, Fluorescence ; Models, Molecular ; phenotype ; Polymorphism ; Proteins ; receptors ; SNARE Proteins - metabolism ; Static Electricity ; Unilamellar Liposomes - chemistry ; Unilamellar Liposomes - metabolism ; viruses</subject><ispartof>Biophysical journal, 2011-12, Vol.101 (11), p.2693-2703</ispartof><rights>2011 Biophysical Society</rights><rights>Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Dec 7, 2011</rights><rights>2011 by the Biophysical Society. 2011 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-4407e2a5df1fa44d80b5f5daeea88a550c27c89af6049d676e013fe8a69dc5b33</citedby><cites>FETCH-LOGICAL-c534t-4407e2a5df1fa44d80b5f5daeea88a550c27c89af6049d676e013fe8a69dc5b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297791/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297791/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22261058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunding, Andreas H.</creatorcontrib><creatorcontrib>Mortensen, Michael W.</creatorcontrib><creatorcontrib>Christensen, Sune M.</creatorcontrib><creatorcontrib>Bhatia, Vikram K.</creatorcontrib><creatorcontrib>Makarov, Ivan</creatorcontrib><creatorcontrib>Metzler, Ralf</creatorcontrib><creatorcontrib>Stamou, Dimitrios</creatorcontrib><title>Intermembrane Docking Reactions Are Regulated by Membrane Curvature</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle–vesicle pairs of different diameter (30–200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30–60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2–10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes.</description><subject>Avidin - metabolism</subject><subject>Calcium</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>cell membranes</subject><subject>Eukaryotes</subject><subject>fluorescence microscopy</subject><subject>Genotype & phenotype</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Membrane</subject><subject>Membrane Fusion</subject><subject>membrane proteins</subject><subject>Membranes</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Molecular</subject><subject>phenotype</subject><subject>Polymorphism</subject><subject>Proteins</subject><subject>receptors</subject><subject>SNARE Proteins - metabolism</subject><subject>Static Electricity</subject><subject>Unilamellar Liposomes - chemistry</subject><subject>Unilamellar Liposomes - metabolism</subject><subject>viruses</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvhB3CBiAtcEmYS24lVCalavioVIQE9W44zWRyy8WInK_Xf49W2FXDoaWTNM69m_DD2HKFAQPl2KNrdUJSAWIAqQKgHbIWClzlAIx-yFQDIvOJKnLAnMQ4AWArAx-ykLEuJIJoVW19MM4UtbdtgJsree_vLTZvsGxk7Oz_F7DxQem2W0czUZe119uWWXS9hb-Yl0FP2qDdjpGc39ZRdffzwY_05v_z66WJ9fplbUfE55xxqKo3oeuwN510DrehFZ4hM0xghwJa1bZTpJXDVyVoSYNVTY6TqrGir6pS9O-bulnZLnaVpDmbUu-C2Jlxrb5z-tzO5n3rj97oqVV0rTAGvbwKC_71QnPXWRUvjmM7xS9QKa5SgVJPIN_eSyCUXoLBRCX31Hzr4JUzpI1IeiiRKHSA8Qjb4GAP1d1sj6INLPejkUh9calA6uUwzL_4-927iVl4CXh6B3nhtNsFFffU9JYgkGkuseSLOjgQlLXtHQUfraLLUuUB21p139yzwB7nFuFM</recordid><startdate>20111207</startdate><enddate>20111207</enddate><creator>Kunding, Andreas H.</creator><creator>Mortensen, Michael W.</creator><creator>Christensen, Sune M.</creator><creator>Bhatia, Vikram K.</creator><creator>Makarov, Ivan</creator><creator>Metzler, Ralf</creator><creator>Stamou, Dimitrios</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111207</creationdate><title>Intermembrane Docking Reactions Are Regulated by Membrane Curvature</title><author>Kunding, Andreas H. ; Mortensen, Michael W. ; Christensen, Sune M. ; Bhatia, Vikram K. ; Makarov, Ivan ; Metzler, Ralf ; Stamou, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-4407e2a5df1fa44d80b5f5daeea88a550c27c89af6049d676e013fe8a69dc5b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Avidin - metabolism</topic><topic>Calcium</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>cell membranes</topic><topic>Eukaryotes</topic><topic>fluorescence microscopy</topic><topic>Genotype & phenotype</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Membrane</topic><topic>Membrane Fusion</topic><topic>membrane proteins</topic><topic>Membranes</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Molecular</topic><topic>phenotype</topic><topic>Polymorphism</topic><topic>Proteins</topic><topic>receptors</topic><topic>SNARE Proteins - metabolism</topic><topic>Static Electricity</topic><topic>Unilamellar Liposomes - chemistry</topic><topic>Unilamellar Liposomes - metabolism</topic><topic>viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunding, Andreas H.</creatorcontrib><creatorcontrib>Mortensen, Michael W.</creatorcontrib><creatorcontrib>Christensen, Sune M.</creatorcontrib><creatorcontrib>Bhatia, Vikram K.</creatorcontrib><creatorcontrib>Makarov, Ivan</creatorcontrib><creatorcontrib>Metzler, Ralf</creatorcontrib><creatorcontrib>Stamou, Dimitrios</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunding, Andreas H.</au><au>Mortensen, Michael W.</au><au>Christensen, Sune M.</au><au>Bhatia, Vikram K.</au><au>Makarov, Ivan</au><au>Metzler, Ralf</au><au>Stamou, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermembrane Docking Reactions Are Regulated by Membrane Curvature</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2011-12-07</date><risdate>2011</risdate><volume>101</volume><issue>11</issue><spage>2693</spage><epage>2703</epage><pages>2693-2703</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle–vesicle pairs of different diameter (30–200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30–60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2–10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22261058</pmid><doi>10.1016/j.bpj.2011.09.059</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2011-12, Vol.101 (11), p.2693-2703 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3297791 |
source | PubMed Central |
subjects | Avidin - metabolism Calcium Cell Membrane - chemistry Cell Membrane - metabolism cell membranes Eukaryotes fluorescence microscopy Genotype & phenotype Kinetics Ligands Lipid Bilayers - chemistry Lipid Bilayers - metabolism Membrane Membrane Fusion membrane proteins Membranes Microscopy, Fluorescence Models, Molecular phenotype Polymorphism Proteins receptors SNARE Proteins - metabolism Static Electricity Unilamellar Liposomes - chemistry Unilamellar Liposomes - metabolism viruses |
title | Intermembrane Docking Reactions Are Regulated by Membrane Curvature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermembrane%20Docking%20Reactions%20Are%20Regulated%20by%20Membrane%20Curvature&rft.jtitle=Biophysical%20journal&rft.au=Kunding,%20Andreas%C2%A0H.&rft.date=2011-12-07&rft.volume=101&rft.issue=11&rft.spage=2693&rft.epage=2703&rft.pages=2693-2703&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2011.09.059&rft_dat=%3Cproquest_pubme%3E917160998%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c534t-4407e2a5df1fa44d80b5f5daeea88a550c27c89af6049d676e013fe8a69dc5b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=911510199&rft_id=info:pmid/22261058&rfr_iscdi=true |