Loading…

Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator

Non‐technical summary  Optical imaging is widely used to map functional areas of the cerebral cortex. We present a method for fast fluorescence imaging of map‐level cortical activity using a calcium indicator protein. Sensory‐evoked neuronal activity can be imaged repeatedly in the same mouse over w...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physiology 2012-01, Vol.590 (1), p.99-107
Main Authors: Minderer, Matthias, Liu, Wenrui, Sumanovski, Lazar T., Kügler, Sebastian, Helmchen, Fritjof, Margolis, David J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5847-d7981f760c37e95e31551133181e4db36ba82719d61d33590f0c74b48c60aa053
cites cdi_FETCH-LOGICAL-c5847-d7981f760c37e95e31551133181e4db36ba82719d61d33590f0c74b48c60aa053
container_end_page 107
container_issue 1
container_start_page 99
container_title The Journal of physiology
container_volume 590
creator Minderer, Matthias
Liu, Wenrui
Sumanovski, Lazar T.
Kügler, Sebastian
Helmchen, Fritjof
Margolis, David J.
description Non‐technical summary  Optical imaging is widely used to map functional areas of the cerebral cortex. We present a method for fast fluorescence imaging of map‐level cortical activity using a calcium indicator protein. Sensory‐evoked neuronal activity can be imaged repeatedly in the same mouse over weeks, enabling new opportunities for the longitudinal study of cortical function and dysfunction. We hope this method will be flexibly applied across different cortical areas and to a variety of newly developed genetically encoded calcium and voltage sensors.   In vivo optical imaging can reveal the dynamics of large‐scale cortical activity, but methods for chronic recording are limited. Here we present a technique for long‐term investigation of cortical map dynamics using wide‐field ratiometric fluorescence imaging of the genetically encoded calcium indicator (GECI) Yellow Cameleon 3.60. We find that wide‐field GECI signals report sensory‐evoked activity in anaesthetized mouse somatosensory cortex with high sensitivity and spatiotemporal precision, and furthermore, can be measured repeatedly in separate imaging sessions over multiple weeks. This method opens new possibilities for the longitudinal study of stability and plasticity of cortical sensory representations.
doi_str_mv 10.1113/jphysiol.2011.219014
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3300049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3374358221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5847-d7981f760c37e95e31551133181e4db36ba82719d61d33590f0c74b48c60aa053</originalsourceid><addsrcrecordid>eNqNkV2LEzEUhoMobq3-A5GAF3oz9ZwkM5ncCEvxkwW9WG8NaSZtU2aSmnSU-femzu6iXohXIZznvOTNQ8hThBUi8leH437KPvYrBogrhgpQ3CMLFI2qpFT8PlkAMFZxWeMFeZTzAQA5KPWQXDAGLW-ALcjX9T7F4C31g9n5sKNxS21MJ29NT7MLOaaJDuZIuymYwdtMx3zGDN254H5h_URdsLFzHS0368eB-tCVySmmx-TB1vTZPbk5l-TL2zfX6_fV1ad3H9aXV5WtWyGrTqoWt7IBy6VTteNY16Ujxxad6Da82ZiWSVRdgx3ntYItWCk2orUNGAM1X5LXc-5x3Ayusy6ckun1MZVaadLReP3nJPi93sXvmnMAEKoEvLgJSPHb6PJJDz5b1_cmuDhmrZBLBoxDIV_-k0RgLchWSVnQ53-hhzimUD5CYy1qPkcuiZgpm2LOyW3vno2gz6r1rWp9Vq1n1WXt2e-V75Zu3RZAzcAP37vpv0L19cfPom0k_wlnHLkP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545337202</pqid></control><display><type>article</type><title>Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator</title><source>Wiley</source><source>PubMed Central</source><creator>Minderer, Matthias ; Liu, Wenrui ; Sumanovski, Lazar T. ; Kügler, Sebastian ; Helmchen, Fritjof ; Margolis, David J.</creator><creatorcontrib>Minderer, Matthias ; Liu, Wenrui ; Sumanovski, Lazar T. ; Kügler, Sebastian ; Helmchen, Fritjof ; Margolis, David J.</creatorcontrib><description>Non‐technical summary  Optical imaging is widely used to map functional areas of the cerebral cortex. We present a method for fast fluorescence imaging of map‐level cortical activity using a calcium indicator protein. Sensory‐evoked neuronal activity can be imaged repeatedly in the same mouse over weeks, enabling new opportunities for the longitudinal study of cortical function and dysfunction. We hope this method will be flexibly applied across different cortical areas and to a variety of newly developed genetically encoded calcium and voltage sensors.   In vivo optical imaging can reveal the dynamics of large‐scale cortical activity, but methods for chronic recording are limited. Here we present a technique for long‐term investigation of cortical map dynamics using wide‐field ratiometric fluorescence imaging of the genetically encoded calcium indicator (GECI) Yellow Cameleon 3.60. We find that wide‐field GECI signals report sensory‐evoked activity in anaesthetized mouse somatosensory cortex with high sensitivity and spatiotemporal precision, and furthermore, can be measured repeatedly in separate imaging sessions over multiple weeks. This method opens new possibilities for the longitudinal study of stability and plasticity of cortical sensory representations.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2011.219014</identifier><identifier>PMID: 22083602</identifier><identifier>CODEN: JPHYA7</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Brain Mapping - methods ; Calcium ; Calcium - metabolism ; Calcium channels (voltage-gated) ; Calcium-Binding Proteins - biosynthesis ; Calcium-Binding Proteins - chemistry ; Calcium-Binding Proteins - genetics ; Computed tomography ; Cortex ; Cortex (somatosensory) ; Dependovirus - genetics ; Diagnostic Imaging - methods ; Evoked Potentials, Somatosensory - physiology ; Female ; Fluorescence ; Longitudinal Studies ; Male ; Mice ; Mice, Inbred C57BL ; Neuroimaging ; Neurons - metabolism ; Neurons - physiology ; NMR ; Nuclear magnetic resonance ; Plasticity (cortical) ; Somatosensory Cortex - metabolism ; Somatosensory Cortex - physiology ; Techniques for Physiology</subject><ispartof>The Journal of physiology, 2012-01, Vol.590 (1), p.99-107</ispartof><rights>2012 The Authors. The Journal of Physiology © 2012 The Physiological Society</rights><rights>2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5847-d7981f760c37e95e31551133181e4db36ba82719d61d33590f0c74b48c60aa053</citedby><cites>FETCH-LOGICAL-c5847-d7981f760c37e95e31551133181e4db36ba82719d61d33590f0c74b48c60aa053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3300049/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3300049/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22083602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Minderer, Matthias</creatorcontrib><creatorcontrib>Liu, Wenrui</creatorcontrib><creatorcontrib>Sumanovski, Lazar T.</creatorcontrib><creatorcontrib>Kügler, Sebastian</creatorcontrib><creatorcontrib>Helmchen, Fritjof</creatorcontrib><creatorcontrib>Margolis, David J.</creatorcontrib><title>Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Non‐technical summary  Optical imaging is widely used to map functional areas of the cerebral cortex. We present a method for fast fluorescence imaging of map‐level cortical activity using a calcium indicator protein. Sensory‐evoked neuronal activity can be imaged repeatedly in the same mouse over weeks, enabling new opportunities for the longitudinal study of cortical function and dysfunction. We hope this method will be flexibly applied across different cortical areas and to a variety of newly developed genetically encoded calcium and voltage sensors.   In vivo optical imaging can reveal the dynamics of large‐scale cortical activity, but methods for chronic recording are limited. Here we present a technique for long‐term investigation of cortical map dynamics using wide‐field ratiometric fluorescence imaging of the genetically encoded calcium indicator (GECI) Yellow Cameleon 3.60. We find that wide‐field GECI signals report sensory‐evoked activity in anaesthetized mouse somatosensory cortex with high sensitivity and spatiotemporal precision, and furthermore, can be measured repeatedly in separate imaging sessions over multiple weeks. This method opens new possibilities for the longitudinal study of stability and plasticity of cortical sensory representations.</description><subject>Animals</subject><subject>Brain Mapping - methods</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium channels (voltage-gated)</subject><subject>Calcium-Binding Proteins - biosynthesis</subject><subject>Calcium-Binding Proteins - chemistry</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Computed tomography</subject><subject>Cortex</subject><subject>Cortex (somatosensory)</subject><subject>Dependovirus - genetics</subject><subject>Diagnostic Imaging - methods</subject><subject>Evoked Potentials, Somatosensory - physiology</subject><subject>Female</subject><subject>Fluorescence</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neuroimaging</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Plasticity (cortical)</subject><subject>Somatosensory Cortex - metabolism</subject><subject>Somatosensory Cortex - physiology</subject><subject>Techniques for Physiology</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkV2LEzEUhoMobq3-A5GAF3oz9ZwkM5ncCEvxkwW9WG8NaSZtU2aSmnSU-femzu6iXohXIZznvOTNQ8hThBUi8leH437KPvYrBogrhgpQ3CMLFI2qpFT8PlkAMFZxWeMFeZTzAQA5KPWQXDAGLW-ALcjX9T7F4C31g9n5sKNxS21MJ29NT7MLOaaJDuZIuymYwdtMx3zGDN254H5h_URdsLFzHS0368eB-tCVySmmx-TB1vTZPbk5l-TL2zfX6_fV1ad3H9aXV5WtWyGrTqoWt7IBy6VTteNY16Ujxxad6Da82ZiWSVRdgx3ntYItWCk2orUNGAM1X5LXc-5x3Ayusy6ckun1MZVaadLReP3nJPi93sXvmnMAEKoEvLgJSPHb6PJJDz5b1_cmuDhmrZBLBoxDIV_-k0RgLchWSVnQ53-hhzimUD5CYy1qPkcuiZgpm2LOyW3vno2gz6r1rWp9Vq1n1WXt2e-V75Zu3RZAzcAP37vpv0L19cfPom0k_wlnHLkP</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Minderer, Matthias</creator><creator>Liu, Wenrui</creator><creator>Sumanovski, Lazar T.</creator><creator>Kügler, Sebastian</creator><creator>Helmchen, Fritjof</creator><creator>Margolis, David J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201201</creationdate><title>Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator</title><author>Minderer, Matthias ; Liu, Wenrui ; Sumanovski, Lazar T. ; Kügler, Sebastian ; Helmchen, Fritjof ; Margolis, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5847-d7981f760c37e95e31551133181e4db36ba82719d61d33590f0c74b48c60aa053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Brain Mapping - methods</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium channels (voltage-gated)</topic><topic>Calcium-Binding Proteins - biosynthesis</topic><topic>Calcium-Binding Proteins - chemistry</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Computed tomography</topic><topic>Cortex</topic><topic>Cortex (somatosensory)</topic><topic>Dependovirus - genetics</topic><topic>Diagnostic Imaging - methods</topic><topic>Evoked Potentials, Somatosensory - physiology</topic><topic>Female</topic><topic>Fluorescence</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neuroimaging</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Plasticity (cortical)</topic><topic>Somatosensory Cortex - metabolism</topic><topic>Somatosensory Cortex - physiology</topic><topic>Techniques for Physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minderer, Matthias</creatorcontrib><creatorcontrib>Liu, Wenrui</creatorcontrib><creatorcontrib>Sumanovski, Lazar T.</creatorcontrib><creatorcontrib>Kügler, Sebastian</creatorcontrib><creatorcontrib>Helmchen, Fritjof</creatorcontrib><creatorcontrib>Margolis, David J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minderer, Matthias</au><au>Liu, Wenrui</au><au>Sumanovski, Lazar T.</au><au>Kügler, Sebastian</au><au>Helmchen, Fritjof</au><au>Margolis, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2012-01</date><risdate>2012</risdate><volume>590</volume><issue>1</issue><spage>99</spage><epage>107</epage><pages>99-107</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><coden>JPHYA7</coden><abstract>Non‐technical summary  Optical imaging is widely used to map functional areas of the cerebral cortex. We present a method for fast fluorescence imaging of map‐level cortical activity using a calcium indicator protein. Sensory‐evoked neuronal activity can be imaged repeatedly in the same mouse over weeks, enabling new opportunities for the longitudinal study of cortical function and dysfunction. We hope this method will be flexibly applied across different cortical areas and to a variety of newly developed genetically encoded calcium and voltage sensors.   In vivo optical imaging can reveal the dynamics of large‐scale cortical activity, but methods for chronic recording are limited. Here we present a technique for long‐term investigation of cortical map dynamics using wide‐field ratiometric fluorescence imaging of the genetically encoded calcium indicator (GECI) Yellow Cameleon 3.60. We find that wide‐field GECI signals report sensory‐evoked activity in anaesthetized mouse somatosensory cortex with high sensitivity and spatiotemporal precision, and furthermore, can be measured repeatedly in separate imaging sessions over multiple weeks. This method opens new possibilities for the longitudinal study of stability and plasticity of cortical sensory representations.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22083602</pmid><doi>10.1113/jphysiol.2011.219014</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2012-01, Vol.590 (1), p.99-107
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3300049
source Wiley; PubMed Central
subjects Animals
Brain Mapping - methods
Calcium
Calcium - metabolism
Calcium channels (voltage-gated)
Calcium-Binding Proteins - biosynthesis
Calcium-Binding Proteins - chemistry
Calcium-Binding Proteins - genetics
Computed tomography
Cortex
Cortex (somatosensory)
Dependovirus - genetics
Diagnostic Imaging - methods
Evoked Potentials, Somatosensory - physiology
Female
Fluorescence
Longitudinal Studies
Male
Mice
Mice, Inbred C57BL
Neuroimaging
Neurons - metabolism
Neurons - physiology
NMR
Nuclear magnetic resonance
Plasticity (cortical)
Somatosensory Cortex - metabolism
Somatosensory Cortex - physiology
Techniques for Physiology
title Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chronic%20imaging%20of%20cortical%20sensory%20map%20dynamics%20using%20a%20genetically%20encoded%20calcium%20indicator&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Minderer,%20Matthias&rft.date=2012-01&rft.volume=590&rft.issue=1&rft.spage=99&rft.epage=107&rft.pages=99-107&rft.issn=0022-3751&rft.eissn=1469-7793&rft.coden=JPHYA7&rft_id=info:doi/10.1113/jphysiol.2011.219014&rft_dat=%3Cproquest_pubme%3E3374358221%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5847-d7981f760c37e95e31551133181e4db36ba82719d61d33590f0c74b48c60aa053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1545337202&rft_id=info:pmid/22083602&rfr_iscdi=true