Loading…

Activation of Biodefense System by Low-Dose Irradiation or Radon Inhalation and Its Applicable Possibility for Treatment of Diabetes and Hepatopathy

Adequate oxygen stress induced by low-dose irradiation activates biodefense system, such as induction of the synthesis of superoxide dismutase (SOD) and glutathione peroxidase. We studied the possibility for alleviation of oxidative damage, such as diabetes and nonalcoholic liver disease. Results sh...

Full description

Saved in:
Bibliographic Details
Published in:ISRN endocrinology 2012-02, Vol.2012 (2012), p.1-11
Main Authors: Kataoka, Takahiro, Yamaoka, Kiyonori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adequate oxygen stress induced by low-dose irradiation activates biodefense system, such as induction of the synthesis of superoxide dismutase (SOD) and glutathione peroxidase. We studied the possibility for alleviation of oxidative damage, such as diabetes and nonalcoholic liver disease. Results show that low-dose γ-irradiation increases SOD activity and protects against alloxan diabetes. Prior or post-low-dose X- or γ-irradiation increases antioxidative functions in livers and inhibits ferric nitrilotriacetate and carbon tetrachloride-induced (CCl4) hepatopathy. Moreover, radon inhalation also inhibits CCl4-induced hepatopathy. It is highly possible that low-dose irradiation including radon inhalation activates the biodefence systems and, therefore, contributes to preventing or reducing reactive oxygen species-related diabetes and nonalcoholic liver disease, which are thought to involve peroxidation.
ISSN:2090-4630
2090-4649
2090-4649
DOI:10.5402/2012/292041