Loading…
Increased PARP-1 association with DNA in alkylation damaged, PARP-inhibited mouse fibroblasts
Treatment of base excision repair-proficient mouse fibroblasts with the DNA alkylating agent methyl methanesulfonate (MMS) and a small molecule inhibitor of PARP-1 results in a striking cell killing phenotype, as previously reported. Earlier studies showed that the mechanism of cell death is apoptos...
Saved in:
Published in: | Molecular cancer research 2012-03, Vol.10 (3), p.360-368 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Treatment of base excision repair-proficient mouse fibroblasts with the DNA alkylating agent methyl methanesulfonate (MMS) and a small molecule inhibitor of PARP-1 results in a striking cell killing phenotype, as previously reported. Earlier studies showed that the mechanism of cell death is apoptosis and requires DNA replication, expression of PARP-1, and an intact S-phase checkpoint cell signaling system. It is proposed that activity-inhibited PARP-1 becomes immobilized at DNA repair intermediates, and that this blocks DNA repair and interferes with DNA replication, eventually promoting an S-phase checkpoint and G(2)-M block. Here we report studies designed to evaluate the prediction that inhibited PARP-1 remains DNA associated in cells undergoing repair of alkylation-induced damage. Using chromatin immunoprecipitation with anti-PARP-1 antibody and qPCR for DNA quantification, a higher level of DNA was found associated with PARP-1 in cells treated with MMS plus PARP inhibitor than in cells without inhibitor treatment. These results have implications for explaining the extreme hypersensitivity phenotype after combination treatment with MMS and a PARP inhibitor. |
---|---|
ISSN: | 1541-7786 1557-3125 |
DOI: | 10.1158/1541-7786.MCR-11-0477 |