Loading…

A transgenic mouse model expressing exclusively human hemoglobin E: Indications of a mild oxidative stress

Hemoglobin (Hb) E (β26 Glu→Lys) is the most common abnormal hemoglobin (Hb) variant in the world. Homozygotes for HbE are mildly thalassemic as a result of the alternate splice mutation and present with a benign clinical picture (microcytic and mildly anemic) with rare clinical symptoms. Given that...

Full description

Saved in:
Bibliographic Details
Published in:Blood cells, molecules, & diseases molecules, & diseases, 2012-02, Vol.48 (2), p.91-101
Main Authors: Chen, Qiuying, Fabry, Mary E., Rybicki, Anne C., Suzuka, Sandra M., Balazs, Tatiana C., Etzion, Zipora, de Jong, Kitty, Akoto, Edna K., Canterino, Joseph E., Kaul, Dhananjay K., Kuypers, Frans A., Lefer, David, Bouhassira, Eric E., Hirsch, Rhoda Elison
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hemoglobin (Hb) E (β26 Glu→Lys) is the most common abnormal hemoglobin (Hb) variant in the world. Homozygotes for HbE are mildly thalassemic as a result of the alternate splice mutation and present with a benign clinical picture (microcytic and mildly anemic) with rare clinical symptoms. Given that the human red blood cell (RBC) contains both HbE and excess α-chains along with minor hemoglobins, the consequence of HbE alone on RBC pathophysiology has not been elucidated. This becomes critical for the highly morbid βE-thalassemia disease. We have generated transgenic mice exclusively expressing human HbE (HbEKO) that exhibit the known aberrant splicing of βE globin mRNA, but are essentially non-thalassemic as demonstrated by RBC α/β (human) globin chain synthesis. These mice exhibit hematological characteristics similar to presentations in human EE individuals: microcytic RBC with low MCV and MCH but normal MCHC; target RBC; mild anemia with low Hb, HCT and mildly elevated reticulocyte levels and decreased osmotic fragility, indicating altered RBC surface area to volume ratio. These alterations are correlated with a mild RBC oxidative stress indicated by enhanced membrane lipid peroxidation, elevated zinc protoporphyrin levels, and by small but significant changes in cardiac function. The C57 (background) mouse and full KO mouse models expressing HbE with the presence of HbS or HbA are used as controls. In select cases, the HbA full KO mouse model is compared but found to be limited due to its RBC thalassemic characteristics. Since the HbEKO mouse RBC lacks an abundance of excess α-chains that would approximate a mouse thalassemia (or a human thalassemia), the results indicate that the observed in vivo RBC mild oxidative stress arises, at least in part, from the molecular consequences of the HbE mutation.
ISSN:1079-9796
1096-0961
DOI:10.1016/j.bcmd.2011.12.002