Loading…
The allele distribution in next-generation sequencing data sets is accurately described as the result of a stochastic branching process
With the availability of next-generation sequencing (NGS) technology, it is expected that sequence variants may be called on a genomic scale. Here, we demonstrate that a deeper understanding of the distribution of the variant call frequencies at heterozygous loci in NGS data sets is a prerequisite f...
Saved in:
Published in: | Nucleic acids research 2012-03, Vol.40 (6), p.2426-2431 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-be8ef78b390b154289bcac646c2688829761874f4d0ddae8879c919cdceecf943 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-be8ef78b390b154289bcac646c2688829761874f4d0ddae8879c919cdceecf943 |
container_end_page | 2431 |
container_issue | 6 |
container_start_page | 2426 |
container_title | Nucleic acids research |
container_volume | 40 |
creator | Heinrich, Verena Stange, Jens Dickhaus, Thorsten Imkeller, Peter Krüger, Ulrike Bauer, Sebastian Mundlos, Stefan Robinson, Peter N Hecht, Jochen Krawitz, Peter M |
description | With the availability of next-generation sequencing (NGS) technology, it is expected that sequence variants may be called on a genomic scale. Here, we demonstrate that a deeper understanding of the distribution of the variant call frequencies at heterozygous loci in NGS data sets is a prerequisite for sensitive variant detection. We model the crucial steps in an NGS protocol as a stochastic branching process and derive a mathematical framework for the expected distribution of alleles at heterozygous loci before measurement that is sequencing. We confirm our theoretical results by analyzing technical replicates of human exome data and demonstrate that the variance of allele frequencies at heterozygous loci is higher than expected by a simple binomial distribution. Due to this high variance, mutation callers relying on binomial distributed priors are less sensitive for heterozygous variants that deviate strongly from the expected mean frequency. Our results also indicate that error rates can be reduced to a greater degree by technical replicates than by increasing sequencing depth. |
doi_str_mv | 10.1093/nar/gkr1073 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3315291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963488458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-be8ef78b390b154289bcac646c2688829761874f4d0ddae8879c919cdceecf943</originalsourceid><addsrcrecordid>eNp9kT1vFDEQhi0EIpdARY_cgRQt8dd57QYJRXxJkdKE2vJ6Z-8MPu_h8SLyC_jbOMkRkSaVNTOPHnnmJeQVZ-84s_Is-3K2-VE46-UTsuJSi05ZLZ6SFZNs3XGmzBE5RvzOGFd8rZ6TIyG46I0WK_LnagvUpwQJ6BixljgsNc6Zxkwz_K7dBjIUf9tC-LlADjFv6Oirb3VFGpH6EJaGQLqmI2BoChipR1qbugAuqdJ5oo2vc9h6rDHQofgctjemfZkDIL4gzyafEF4e3hPy7dPHq_Mv3cXl56_nHy66oHpbuwEMTL0ZpGVDW0UYOwQftNJBaGOMsL3mpleTGtk4ejCmt8FyG8YAECar5Al5f-fdL8MOWjvX4pPbl7jz5drNPrqHkxy3bjP_clLytbC8Cd4cBGVu58DqdhEDpOQzzAs6q6UyRq1NI98-SnLGjJHGMN3Q0zs0lBmxwHT_Ic7cTciuhewOITf69f873LP_UpV_AYIGp_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1008838806</pqid></control><display><type>article</type><title>The allele distribution in next-generation sequencing data sets is accurately described as the result of a stochastic branching process</title><source>PubMed Central Free</source><source>Open Access: Oxford University Press Open Journals</source><creator>Heinrich, Verena ; Stange, Jens ; Dickhaus, Thorsten ; Imkeller, Peter ; Krüger, Ulrike ; Bauer, Sebastian ; Mundlos, Stefan ; Robinson, Peter N ; Hecht, Jochen ; Krawitz, Peter M</creator><creatorcontrib>Heinrich, Verena ; Stange, Jens ; Dickhaus, Thorsten ; Imkeller, Peter ; Krüger, Ulrike ; Bauer, Sebastian ; Mundlos, Stefan ; Robinson, Peter N ; Hecht, Jochen ; Krawitz, Peter M</creatorcontrib><description>With the availability of next-generation sequencing (NGS) technology, it is expected that sequence variants may be called on a genomic scale. Here, we demonstrate that a deeper understanding of the distribution of the variant call frequencies at heterozygous loci in NGS data sets is a prerequisite for sensitive variant detection. We model the crucial steps in an NGS protocol as a stochastic branching process and derive a mathematical framework for the expected distribution of alleles at heterozygous loci before measurement that is sequencing. We confirm our theoretical results by analyzing technical replicates of human exome data and demonstrate that the variance of allele frequencies at heterozygous loci is higher than expected by a simple binomial distribution. Due to this high variance, mutation callers relying on binomial distributed priors are less sensitive for heterozygous variants that deviate strongly from the expected mean frequency. Our results also indicate that error rates can be reduced to a greater degree by technical replicates than by increasing sequencing depth.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkr1073</identifier><identifier>PMID: 22127862</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Alleles ; Computational Biology ; Data processing ; Exome ; Gene Frequency ; genomics ; Heterozygote ; High-Throughput Nucleotide Sequencing ; Humans ; Mathematical models ; Mutation ; Sequence Analysis, DNA ; Stochastic Processes ; Stochasticity</subject><ispartof>Nucleic acids research, 2012-03, Vol.40 (6), p.2426-2431</ispartof><rights>The Author(s) 2011. Published by Oxford University Press. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-be8ef78b390b154289bcac646c2688829761874f4d0ddae8879c919cdceecf943</citedby><cites>FETCH-LOGICAL-c479t-be8ef78b390b154289bcac646c2688829761874f4d0ddae8879c919cdceecf943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315291/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315291/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22127862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinrich, Verena</creatorcontrib><creatorcontrib>Stange, Jens</creatorcontrib><creatorcontrib>Dickhaus, Thorsten</creatorcontrib><creatorcontrib>Imkeller, Peter</creatorcontrib><creatorcontrib>Krüger, Ulrike</creatorcontrib><creatorcontrib>Bauer, Sebastian</creatorcontrib><creatorcontrib>Mundlos, Stefan</creatorcontrib><creatorcontrib>Robinson, Peter N</creatorcontrib><creatorcontrib>Hecht, Jochen</creatorcontrib><creatorcontrib>Krawitz, Peter M</creatorcontrib><title>The allele distribution in next-generation sequencing data sets is accurately described as the result of a stochastic branching process</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>With the availability of next-generation sequencing (NGS) technology, it is expected that sequence variants may be called on a genomic scale. Here, we demonstrate that a deeper understanding of the distribution of the variant call frequencies at heterozygous loci in NGS data sets is a prerequisite for sensitive variant detection. We model the crucial steps in an NGS protocol as a stochastic branching process and derive a mathematical framework for the expected distribution of alleles at heterozygous loci before measurement that is sequencing. We confirm our theoretical results by analyzing technical replicates of human exome data and demonstrate that the variance of allele frequencies at heterozygous loci is higher than expected by a simple binomial distribution. Due to this high variance, mutation callers relying on binomial distributed priors are less sensitive for heterozygous variants that deviate strongly from the expected mean frequency. Our results also indicate that error rates can be reduced to a greater degree by technical replicates than by increasing sequencing depth.</description><subject>Alleles</subject><subject>Computational Biology</subject><subject>Data processing</subject><subject>Exome</subject><subject>Gene Frequency</subject><subject>genomics</subject><subject>Heterozygote</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Mutation</subject><subject>Sequence Analysis, DNA</subject><subject>Stochastic Processes</subject><subject>Stochasticity</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kT1vFDEQhi0EIpdARY_cgRQt8dd57QYJRXxJkdKE2vJ6Z-8MPu_h8SLyC_jbOMkRkSaVNTOPHnnmJeQVZ-84s_Is-3K2-VE46-UTsuJSi05ZLZ6SFZNs3XGmzBE5RvzOGFd8rZ6TIyG46I0WK_LnagvUpwQJ6BixljgsNc6Zxkwz_K7dBjIUf9tC-LlADjFv6Oirb3VFGpH6EJaGQLqmI2BoChipR1qbugAuqdJ5oo2vc9h6rDHQofgctjemfZkDIL4gzyafEF4e3hPy7dPHq_Mv3cXl56_nHy66oHpbuwEMTL0ZpGVDW0UYOwQftNJBaGOMsL3mpleTGtk4ejCmt8FyG8YAECar5Al5f-fdL8MOWjvX4pPbl7jz5drNPrqHkxy3bjP_clLytbC8Cd4cBGVu58DqdhEDpOQzzAs6q6UyRq1NI98-SnLGjJHGMN3Q0zs0lBmxwHT_Ic7cTciuhewOITf69f873LP_UpV_AYIGp_Q</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Heinrich, Verena</creator><creator>Stange, Jens</creator><creator>Dickhaus, Thorsten</creator><creator>Imkeller, Peter</creator><creator>Krüger, Ulrike</creator><creator>Bauer, Sebastian</creator><creator>Mundlos, Stefan</creator><creator>Robinson, Peter N</creator><creator>Hecht, Jochen</creator><creator>Krawitz, Peter M</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120301</creationdate><title>The allele distribution in next-generation sequencing data sets is accurately described as the result of a stochastic branching process</title><author>Heinrich, Verena ; Stange, Jens ; Dickhaus, Thorsten ; Imkeller, Peter ; Krüger, Ulrike ; Bauer, Sebastian ; Mundlos, Stefan ; Robinson, Peter N ; Hecht, Jochen ; Krawitz, Peter M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-be8ef78b390b154289bcac646c2688829761874f4d0ddae8879c919cdceecf943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alleles</topic><topic>Computational Biology</topic><topic>Data processing</topic><topic>Exome</topic><topic>Gene Frequency</topic><topic>genomics</topic><topic>Heterozygote</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Mutation</topic><topic>Sequence Analysis, DNA</topic><topic>Stochastic Processes</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinrich, Verena</creatorcontrib><creatorcontrib>Stange, Jens</creatorcontrib><creatorcontrib>Dickhaus, Thorsten</creatorcontrib><creatorcontrib>Imkeller, Peter</creatorcontrib><creatorcontrib>Krüger, Ulrike</creatorcontrib><creatorcontrib>Bauer, Sebastian</creatorcontrib><creatorcontrib>Mundlos, Stefan</creatorcontrib><creatorcontrib>Robinson, Peter N</creatorcontrib><creatorcontrib>Hecht, Jochen</creatorcontrib><creatorcontrib>Krawitz, Peter M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinrich, Verena</au><au>Stange, Jens</au><au>Dickhaus, Thorsten</au><au>Imkeller, Peter</au><au>Krüger, Ulrike</au><au>Bauer, Sebastian</au><au>Mundlos, Stefan</au><au>Robinson, Peter N</au><au>Hecht, Jochen</au><au>Krawitz, Peter M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The allele distribution in next-generation sequencing data sets is accurately described as the result of a stochastic branching process</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>40</volume><issue>6</issue><spage>2426</spage><epage>2431</epage><pages>2426-2431</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>With the availability of next-generation sequencing (NGS) technology, it is expected that sequence variants may be called on a genomic scale. Here, we demonstrate that a deeper understanding of the distribution of the variant call frequencies at heterozygous loci in NGS data sets is a prerequisite for sensitive variant detection. We model the crucial steps in an NGS protocol as a stochastic branching process and derive a mathematical framework for the expected distribution of alleles at heterozygous loci before measurement that is sequencing. We confirm our theoretical results by analyzing technical replicates of human exome data and demonstrate that the variance of allele frequencies at heterozygous loci is higher than expected by a simple binomial distribution. Due to this high variance, mutation callers relying on binomial distributed priors are less sensitive for heterozygous variants that deviate strongly from the expected mean frequency. Our results also indicate that error rates can be reduced to a greater degree by technical replicates than by increasing sequencing depth.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>22127862</pmid><doi>10.1093/nar/gkr1073</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2012-03, Vol.40 (6), p.2426-2431 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3315291 |
source | PubMed Central Free; Open Access: Oxford University Press Open Journals |
subjects | Alleles Computational Biology Data processing Exome Gene Frequency genomics Heterozygote High-Throughput Nucleotide Sequencing Humans Mathematical models Mutation Sequence Analysis, DNA Stochastic Processes Stochasticity |
title | The allele distribution in next-generation sequencing data sets is accurately described as the result of a stochastic branching process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20allele%20distribution%20in%20next-generation%20sequencing%20data%20sets%20is%20accurately%20described%20as%20the%20result%20of%20a%20stochastic%20branching%20process&rft.jtitle=Nucleic%20acids%20research&rft.au=Heinrich,%20Verena&rft.date=2012-03-01&rft.volume=40&rft.issue=6&rft.spage=2426&rft.epage=2431&rft.pages=2426-2431&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkr1073&rft_dat=%3Cproquest_pubme%3E963488458%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-be8ef78b390b154289bcac646c2688829761874f4d0ddae8879c919cdceecf943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1008838806&rft_id=info:pmid/22127862&rfr_iscdi=true |