Loading…

In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall

Alpha-1 acid glycoprotein (AGP) is a highly glycosylated plasma protein that exerts vasoprotective effects. We hypothesized that AGP’s N-linked glycans govern its rate of clearance from the circulation, and followed the disappearance of different forms of radiolabeled human AGP from the plasma of ra...

Full description

Saved in:
Bibliographic Details
Published in:BioMed research international 2012-01, Vol.2012 (2012), p.1-11
Main Authors: Eltringham-Smith, Louise J., McCurdy, Teresa R., Sheffield, William P., Fox-Robichaud, Alison E., Gataiance, Sharon, Bhakta, Varsha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523
cites cdi_FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523
container_end_page 11
container_issue 2012
container_start_page 1
container_title BioMed research international
container_volume 2012
creator Eltringham-Smith, Louise J.
McCurdy, Teresa R.
Sheffield, William P.
Fox-Robichaud, Alison E.
Gataiance, Sharon
Bhakta, Varsha
description Alpha-1 acid glycoprotein (AGP) is a highly glycosylated plasma protein that exerts vasoprotective effects. We hypothesized that AGP’s N-linked glycans govern its rate of clearance from the circulation, and followed the disappearance of different forms of radiolabeled human AGP from the plasma of rabbits and mice. Enzymatic deglycosylation of human plasma-derived AGP (pdAGP) by Peptide: N-Glycosidase F yielded a mixture of differentially deglycosylated forms (PNGase-AGP), while the introduction of five Asn to Gln mutations in recombinant Pichia pastoris-derived AGP (rAGP-N(5)Q) eliminated N-linked glycosylation. PNGase-AGP was cleared from the rabbit circulation 9-fold, and rAGP-N(5)Q, 46-fold more rapidly than pdAGP, primarily via a renal route. Pichia pastoris-derived wild-type rAGP differed from pdAGP in expressing mannose-terminated glycans, and, like neuraminidase-treated pdAGP, was more rapidly removed from the rabbit circulation than rAGP-N(5)Q. Systemic hyaluronidase treatment of mice transiently decreased pdAGP clearance. AGP administration to mice reduced vascular binding of hyaluronic acid binding protein in the liver microcirculation and increased its plasma levels. Our results support a critical role of N-linked glycosylation of AGP in regulating its in vivo clearance and an influence of a hyaluronidase-sensitive component of the vessel wall on its transendothelial passage.
doi_str_mv 10.1155/2012/292730
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3321579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646679221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523</originalsourceid><addsrcrecordid>eNqF0U1vFCEYB_CJ0dhaPXnWkHgxmrHAvDBzMdlsap1koxetR8IwDy6VhRWY1v0e_cBldtaNejEcIPDjD0-eLHtO8DtCquqcYkLPaUtZgR9kp4QQnDNakYfHdVmcZE9CuMaYsKZuH2cnlFZlhTE9ze46i670jUNLA8ILKwE5hRZmuxY5QQupB3RpdtJtvYugLeoC6qwyIyQ5oH6H4hrQxa8INk4XuxjQp3yl7Q84XAw7I6J2Fgm795PobAQv5H77Vsf1PuQKQgCDvgljnmaPlDABnh3ms-zrh4svy4_56vNlt1ysclnWNOakErIhlOJeDD2RlWxVCUoOZVnXeCgo9KwVPTSUYdkChVoNRAmqGBtkLSpanGXv59zt2G9gkKkILwzfer0Rfsed0PzvE6vX_Lu74UVBScXaFPD6EODdzxFC5BsdJBgjLLgxcIJpg2lbN9Nbr_6h1270NpWXVBp1wXCT1NtZSe9C8KCOnyGYT93mU7f53O2kX_75_6P93d4E3sxgre0gbvV_0l7MGBIBJY64rHHbsOIe_le8WQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010163708</pqid></control><display><type>article</type><title>In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Eltringham-Smith, Louise J. ; McCurdy, Teresa R. ; Sheffield, William P. ; Fox-Robichaud, Alison E. ; Gataiance, Sharon ; Bhakta, Varsha</creator><contributor>Butenas, Saulius</contributor><creatorcontrib>Eltringham-Smith, Louise J. ; McCurdy, Teresa R. ; Sheffield, William P. ; Fox-Robichaud, Alison E. ; Gataiance, Sharon ; Bhakta, Varsha ; Butenas, Saulius</creatorcontrib><description>Alpha-1 acid glycoprotein (AGP) is a highly glycosylated plasma protein that exerts vasoprotective effects. We hypothesized that AGP’s N-linked glycans govern its rate of clearance from the circulation, and followed the disappearance of different forms of radiolabeled human AGP from the plasma of rabbits and mice. Enzymatic deglycosylation of human plasma-derived AGP (pdAGP) by Peptide: N-Glycosidase F yielded a mixture of differentially deglycosylated forms (PNGase-AGP), while the introduction of five Asn to Gln mutations in recombinant Pichia pastoris-derived AGP (rAGP-N(5)Q) eliminated N-linked glycosylation. PNGase-AGP was cleared from the rabbit circulation 9-fold, and rAGP-N(5)Q, 46-fold more rapidly than pdAGP, primarily via a renal route. Pichia pastoris-derived wild-type rAGP differed from pdAGP in expressing mannose-terminated glycans, and, like neuraminidase-treated pdAGP, was more rapidly removed from the rabbit circulation than rAGP-N(5)Q. Systemic hyaluronidase treatment of mice transiently decreased pdAGP clearance. AGP administration to mice reduced vascular binding of hyaluronic acid binding protein in the liver microcirculation and increased its plasma levels. Our results support a critical role of N-linked glycosylation of AGP in regulating its in vivo clearance and an influence of a hyaluronidase-sensitive component of the vessel wall on its transendothelial passage.</description><identifier>ISSN: 1110-7243</identifier><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 1110-7251</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2012/292730</identifier><identifier>PMID: 22545002</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Amino Acid Substitution ; Analysis of Variance ; Animals ; Cell culture ; Deglycosylation ; Female ; Glycosylation ; Health sciences ; Humans ; Hyaluronan Receptors - metabolism ; Hyaluronoglucosaminidase - administration &amp; dosage ; Hyaluronoglucosaminidase - metabolism ; Lectins, C-Type - metabolism ; Life sciences ; Ligands ; Liver - blood supply ; Liver - metabolism ; Male ; Mannose-Binding Lectins - metabolism ; Mice ; Mice, Inbred C57BL ; Neuraminidase - metabolism ; Orosomucoid - administration &amp; dosage ; Orosomucoid - chemistry ; Orosomucoid - pharmacokinetics ; Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism ; Permeability ; Pichia - genetics ; Pichia pastoris ; R&amp;D ; Rabbits ; Receptors, Cell Surface - metabolism ; Recombinant Proteins - administration &amp; dosage ; Recombinant Proteins - chemistry ; Recombinant Proteins - pharmacokinetics ; Research &amp; development ; Rodents</subject><ispartof>BioMed research international, 2012-01, Vol.2012 (2012), p.1-11</ispartof><rights>Copyright © 2012 Teresa R. McCurdy et al.</rights><rights>Copyright © 2012 Teresa R. McCurdy et al. Teresa R. McCurdy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2012 Teresa R. McCurdy et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523</citedby><cites>FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523</cites><orcidid>0000-0002-0698-072X ; 0000-0002-5870-8189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1010163708/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1010163708?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22545002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Butenas, Saulius</contributor><creatorcontrib>Eltringham-Smith, Louise J.</creatorcontrib><creatorcontrib>McCurdy, Teresa R.</creatorcontrib><creatorcontrib>Sheffield, William P.</creatorcontrib><creatorcontrib>Fox-Robichaud, Alison E.</creatorcontrib><creatorcontrib>Gataiance, Sharon</creatorcontrib><creatorcontrib>Bhakta, Varsha</creatorcontrib><title>In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall</title><title>BioMed research international</title><addtitle>J Biomed Biotechnol</addtitle><description>Alpha-1 acid glycoprotein (AGP) is a highly glycosylated plasma protein that exerts vasoprotective effects. We hypothesized that AGP’s N-linked glycans govern its rate of clearance from the circulation, and followed the disappearance of different forms of radiolabeled human AGP from the plasma of rabbits and mice. Enzymatic deglycosylation of human plasma-derived AGP (pdAGP) by Peptide: N-Glycosidase F yielded a mixture of differentially deglycosylated forms (PNGase-AGP), while the introduction of five Asn to Gln mutations in recombinant Pichia pastoris-derived AGP (rAGP-N(5)Q) eliminated N-linked glycosylation. PNGase-AGP was cleared from the rabbit circulation 9-fold, and rAGP-N(5)Q, 46-fold more rapidly than pdAGP, primarily via a renal route. Pichia pastoris-derived wild-type rAGP differed from pdAGP in expressing mannose-terminated glycans, and, like neuraminidase-treated pdAGP, was more rapidly removed from the rabbit circulation than rAGP-N(5)Q. Systemic hyaluronidase treatment of mice transiently decreased pdAGP clearance. AGP administration to mice reduced vascular binding of hyaluronic acid binding protein in the liver microcirculation and increased its plasma levels. Our results support a critical role of N-linked glycosylation of AGP in regulating its in vivo clearance and an influence of a hyaluronidase-sensitive component of the vessel wall on its transendothelial passage.</description><subject>Amino Acid Substitution</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Cell culture</subject><subject>Deglycosylation</subject><subject>Female</subject><subject>Glycosylation</subject><subject>Health sciences</subject><subject>Humans</subject><subject>Hyaluronan Receptors - metabolism</subject><subject>Hyaluronoglucosaminidase - administration &amp; dosage</subject><subject>Hyaluronoglucosaminidase - metabolism</subject><subject>Lectins, C-Type - metabolism</subject><subject>Life sciences</subject><subject>Ligands</subject><subject>Liver - blood supply</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mannose-Binding Lectins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neuraminidase - metabolism</subject><subject>Orosomucoid - administration &amp; dosage</subject><subject>Orosomucoid - chemistry</subject><subject>Orosomucoid - pharmacokinetics</subject><subject>Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism</subject><subject>Permeability</subject><subject>Pichia - genetics</subject><subject>Pichia pastoris</subject><subject>R&amp;D</subject><subject>Rabbits</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Recombinant Proteins - administration &amp; dosage</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - pharmacokinetics</subject><subject>Research &amp; development</subject><subject>Rodents</subject><issn>1110-7243</issn><issn>2314-6133</issn><issn>1110-7251</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0U1vFCEYB_CJ0dhaPXnWkHgxmrHAvDBzMdlsap1koxetR8IwDy6VhRWY1v0e_cBldtaNejEcIPDjD0-eLHtO8DtCquqcYkLPaUtZgR9kp4QQnDNakYfHdVmcZE9CuMaYsKZuH2cnlFZlhTE9ze46i670jUNLA8ILKwE5hRZmuxY5QQupB3RpdtJtvYugLeoC6qwyIyQ5oH6H4hrQxa8INk4XuxjQp3yl7Q84XAw7I6J2Fgm795PobAQv5H77Vsf1PuQKQgCDvgljnmaPlDABnh3ms-zrh4svy4_56vNlt1ysclnWNOakErIhlOJeDD2RlWxVCUoOZVnXeCgo9KwVPTSUYdkChVoNRAmqGBtkLSpanGXv59zt2G9gkKkILwzfer0Rfsed0PzvE6vX_Lu74UVBScXaFPD6EODdzxFC5BsdJBgjLLgxcIJpg2lbN9Nbr_6h1270NpWXVBp1wXCT1NtZSe9C8KCOnyGYT93mU7f53O2kX_75_6P93d4E3sxgre0gbvV_0l7MGBIBJY64rHHbsOIe_le8WQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Eltringham-Smith, Louise J.</creator><creator>McCurdy, Teresa R.</creator><creator>Sheffield, William P.</creator><creator>Fox-Robichaud, Alison E.</creator><creator>Gataiance, Sharon</creator><creator>Bhakta, Varsha</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0698-072X</orcidid><orcidid>https://orcid.org/0000-0002-5870-8189</orcidid></search><sort><creationdate>20120101</creationdate><title>In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall</title><author>Eltringham-Smith, Louise J. ; McCurdy, Teresa R. ; Sheffield, William P. ; Fox-Robichaud, Alison E. ; Gataiance, Sharon ; Bhakta, Varsha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Substitution</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Cell culture</topic><topic>Deglycosylation</topic><topic>Female</topic><topic>Glycosylation</topic><topic>Health sciences</topic><topic>Humans</topic><topic>Hyaluronan Receptors - metabolism</topic><topic>Hyaluronoglucosaminidase - administration &amp; dosage</topic><topic>Hyaluronoglucosaminidase - metabolism</topic><topic>Lectins, C-Type - metabolism</topic><topic>Life sciences</topic><topic>Ligands</topic><topic>Liver - blood supply</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mannose-Binding Lectins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neuraminidase - metabolism</topic><topic>Orosomucoid - administration &amp; dosage</topic><topic>Orosomucoid - chemistry</topic><topic>Orosomucoid - pharmacokinetics</topic><topic>Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism</topic><topic>Permeability</topic><topic>Pichia - genetics</topic><topic>Pichia pastoris</topic><topic>R&amp;D</topic><topic>Rabbits</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Recombinant Proteins - administration &amp; dosage</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - pharmacokinetics</topic><topic>Research &amp; development</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eltringham-Smith, Louise J.</creatorcontrib><creatorcontrib>McCurdy, Teresa R.</creatorcontrib><creatorcontrib>Sheffield, William P.</creatorcontrib><creatorcontrib>Fox-Robichaud, Alison E.</creatorcontrib><creatorcontrib>Gataiance, Sharon</creatorcontrib><creatorcontrib>Bhakta, Varsha</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eltringham-Smith, Louise J.</au><au>McCurdy, Teresa R.</au><au>Sheffield, William P.</au><au>Fox-Robichaud, Alison E.</au><au>Gataiance, Sharon</au><au>Bhakta, Varsha</au><au>Butenas, Saulius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall</atitle><jtitle>BioMed research international</jtitle><addtitle>J Biomed Biotechnol</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1110-7243</issn><issn>2314-6133</issn><eissn>1110-7251</eissn><eissn>2314-6141</eissn><abstract>Alpha-1 acid glycoprotein (AGP) is a highly glycosylated plasma protein that exerts vasoprotective effects. We hypothesized that AGP’s N-linked glycans govern its rate of clearance from the circulation, and followed the disappearance of different forms of radiolabeled human AGP from the plasma of rabbits and mice. Enzymatic deglycosylation of human plasma-derived AGP (pdAGP) by Peptide: N-Glycosidase F yielded a mixture of differentially deglycosylated forms (PNGase-AGP), while the introduction of five Asn to Gln mutations in recombinant Pichia pastoris-derived AGP (rAGP-N(5)Q) eliminated N-linked glycosylation. PNGase-AGP was cleared from the rabbit circulation 9-fold, and rAGP-N(5)Q, 46-fold more rapidly than pdAGP, primarily via a renal route. Pichia pastoris-derived wild-type rAGP differed from pdAGP in expressing mannose-terminated glycans, and, like neuraminidase-treated pdAGP, was more rapidly removed from the rabbit circulation than rAGP-N(5)Q. Systemic hyaluronidase treatment of mice transiently decreased pdAGP clearance. AGP administration to mice reduced vascular binding of hyaluronic acid binding protein in the liver microcirculation and increased its plasma levels. Our results support a critical role of N-linked glycosylation of AGP in regulating its in vivo clearance and an influence of a hyaluronidase-sensitive component of the vessel wall on its transendothelial passage.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>22545002</pmid><doi>10.1155/2012/292730</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0698-072X</orcidid><orcidid>https://orcid.org/0000-0002-5870-8189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-7243
ispartof BioMed research international, 2012-01, Vol.2012 (2012), p.1-11
issn 1110-7243
2314-6133
1110-7251
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3321579
source Publicly Available Content Database; Wiley Open Access; PubMed Central
subjects Amino Acid Substitution
Analysis of Variance
Animals
Cell culture
Deglycosylation
Female
Glycosylation
Health sciences
Humans
Hyaluronan Receptors - metabolism
Hyaluronoglucosaminidase - administration & dosage
Hyaluronoglucosaminidase - metabolism
Lectins, C-Type - metabolism
Life sciences
Ligands
Liver - blood supply
Liver - metabolism
Male
Mannose-Binding Lectins - metabolism
Mice
Mice, Inbred C57BL
Neuraminidase - metabolism
Orosomucoid - administration & dosage
Orosomucoid - chemistry
Orosomucoid - pharmacokinetics
Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism
Permeability
Pichia - genetics
Pichia pastoris
R&D
Rabbits
Receptors, Cell Surface - metabolism
Recombinant Proteins - administration & dosage
Recombinant Proteins - chemistry
Recombinant Proteins - pharmacokinetics
Research & development
Rodents
title In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Clearance%20of%20Alpha-1%20Acid%20Glycoprotein%20Is%20Influenced%20by%20the%20Extent%20of%20Its%20N-Linked%20Glycosylation%20and%20by%20Its%20Interaction%20with%20the%20Vessel%20Wall&rft.jtitle=BioMed%20research%20international&rft.au=Eltringham-Smith,%20Louise%20J.&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1110-7243&rft.eissn=1110-7251&rft_id=info:doi/10.1155/2012/292730&rft_dat=%3Cproquest_pubme%3E2646679221%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010163708&rft_id=info:pmid/22545002&rfr_iscdi=true