Loading…
In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall
Alpha-1 acid glycoprotein (AGP) is a highly glycosylated plasma protein that exerts vasoprotective effects. We hypothesized that AGP’s N-linked glycans govern its rate of clearance from the circulation, and followed the disappearance of different forms of radiolabeled human AGP from the plasma of ra...
Saved in:
Published in: | BioMed research international 2012-01, Vol.2012 (2012), p.1-11 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523 |
container_end_page | 11 |
container_issue | 2012 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2012 |
creator | Eltringham-Smith, Louise J. McCurdy, Teresa R. Sheffield, William P. Fox-Robichaud, Alison E. Gataiance, Sharon Bhakta, Varsha |
description | Alpha-1 acid glycoprotein (AGP) is a highly glycosylated plasma protein that exerts vasoprotective effects. We hypothesized that AGP’s N-linked glycans govern its rate of clearance from the circulation, and followed the disappearance of different forms of radiolabeled human AGP from the plasma of rabbits and mice. Enzymatic deglycosylation of human plasma-derived AGP (pdAGP) by Peptide: N-Glycosidase F yielded a mixture of differentially deglycosylated forms (PNGase-AGP), while the introduction of five Asn to Gln mutations in recombinant Pichia pastoris-derived AGP (rAGP-N(5)Q) eliminated N-linked glycosylation. PNGase-AGP was cleared from the rabbit circulation 9-fold, and rAGP-N(5)Q, 46-fold more rapidly than pdAGP, primarily via a renal route. Pichia pastoris-derived wild-type rAGP differed from pdAGP in expressing mannose-terminated glycans, and, like neuraminidase-treated pdAGP, was more rapidly removed from the rabbit circulation than rAGP-N(5)Q. Systemic hyaluronidase treatment of mice transiently decreased pdAGP clearance. AGP administration to mice reduced vascular binding of hyaluronic acid binding protein in the liver microcirculation and increased its plasma levels. Our results support a critical role of N-linked glycosylation of AGP in regulating its in vivo clearance and an influence of a hyaluronidase-sensitive component of the vessel wall on its transendothelial passage. |
doi_str_mv | 10.1155/2012/292730 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3321579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646679221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523</originalsourceid><addsrcrecordid>eNqF0U1vFCEYB_CJ0dhaPXnWkHgxmrHAvDBzMdlsap1koxetR8IwDy6VhRWY1v0e_cBldtaNejEcIPDjD0-eLHtO8DtCquqcYkLPaUtZgR9kp4QQnDNakYfHdVmcZE9CuMaYsKZuH2cnlFZlhTE9ze46i670jUNLA8ILKwE5hRZmuxY5QQupB3RpdtJtvYugLeoC6qwyIyQ5oH6H4hrQxa8INk4XuxjQp3yl7Q84XAw7I6J2Fgm795PobAQv5H77Vsf1PuQKQgCDvgljnmaPlDABnh3ms-zrh4svy4_56vNlt1ysclnWNOakErIhlOJeDD2RlWxVCUoOZVnXeCgo9KwVPTSUYdkChVoNRAmqGBtkLSpanGXv59zt2G9gkKkILwzfer0Rfsed0PzvE6vX_Lu74UVBScXaFPD6EODdzxFC5BsdJBgjLLgxcIJpg2lbN9Nbr_6h1270NpWXVBp1wXCT1NtZSe9C8KCOnyGYT93mU7f53O2kX_75_6P93d4E3sxgre0gbvV_0l7MGBIBJY64rHHbsOIe_le8WQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010163708</pqid></control><display><type>article</type><title>In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Eltringham-Smith, Louise J. ; McCurdy, Teresa R. ; Sheffield, William P. ; Fox-Robichaud, Alison E. ; Gataiance, Sharon ; Bhakta, Varsha</creator><contributor>Butenas, Saulius</contributor><creatorcontrib>Eltringham-Smith, Louise J. ; McCurdy, Teresa R. ; Sheffield, William P. ; Fox-Robichaud, Alison E. ; Gataiance, Sharon ; Bhakta, Varsha ; Butenas, Saulius</creatorcontrib><description>Alpha-1 acid glycoprotein (AGP) is a highly glycosylated plasma protein that exerts vasoprotective effects. We hypothesized that AGP’s N-linked glycans govern its rate of clearance from the circulation, and followed the disappearance of different forms of radiolabeled human AGP from the plasma of rabbits and mice. Enzymatic deglycosylation of human plasma-derived AGP (pdAGP) by Peptide: N-Glycosidase F yielded a mixture of differentially deglycosylated forms (PNGase-AGP), while the introduction of five Asn to Gln mutations in recombinant Pichia pastoris-derived AGP (rAGP-N(5)Q) eliminated N-linked glycosylation. PNGase-AGP was cleared from the rabbit circulation 9-fold, and rAGP-N(5)Q, 46-fold more rapidly than pdAGP, primarily via a renal route. Pichia pastoris-derived wild-type rAGP differed from pdAGP in expressing mannose-terminated glycans, and, like neuraminidase-treated pdAGP, was more rapidly removed from the rabbit circulation than rAGP-N(5)Q. Systemic hyaluronidase treatment of mice transiently decreased pdAGP clearance. AGP administration to mice reduced vascular binding of hyaluronic acid binding protein in the liver microcirculation and increased its plasma levels. Our results support a critical role of N-linked glycosylation of AGP in regulating its in vivo clearance and an influence of a hyaluronidase-sensitive component of the vessel wall on its transendothelial passage.</description><identifier>ISSN: 1110-7243</identifier><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 1110-7251</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2012/292730</identifier><identifier>PMID: 22545002</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Amino Acid Substitution ; Analysis of Variance ; Animals ; Cell culture ; Deglycosylation ; Female ; Glycosylation ; Health sciences ; Humans ; Hyaluronan Receptors - metabolism ; Hyaluronoglucosaminidase - administration & dosage ; Hyaluronoglucosaminidase - metabolism ; Lectins, C-Type - metabolism ; Life sciences ; Ligands ; Liver - blood supply ; Liver - metabolism ; Male ; Mannose-Binding Lectins - metabolism ; Mice ; Mice, Inbred C57BL ; Neuraminidase - metabolism ; Orosomucoid - administration & dosage ; Orosomucoid - chemistry ; Orosomucoid - pharmacokinetics ; Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism ; Permeability ; Pichia - genetics ; Pichia pastoris ; R&D ; Rabbits ; Receptors, Cell Surface - metabolism ; Recombinant Proteins - administration & dosage ; Recombinant Proteins - chemistry ; Recombinant Proteins - pharmacokinetics ; Research & development ; Rodents</subject><ispartof>BioMed research international, 2012-01, Vol.2012 (2012), p.1-11</ispartof><rights>Copyright © 2012 Teresa R. McCurdy et al.</rights><rights>Copyright © 2012 Teresa R. McCurdy et al. Teresa R. McCurdy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2012 Teresa R. McCurdy et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523</citedby><cites>FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523</cites><orcidid>0000-0002-0698-072X ; 0000-0002-5870-8189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1010163708/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1010163708?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22545002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Butenas, Saulius</contributor><creatorcontrib>Eltringham-Smith, Louise J.</creatorcontrib><creatorcontrib>McCurdy, Teresa R.</creatorcontrib><creatorcontrib>Sheffield, William P.</creatorcontrib><creatorcontrib>Fox-Robichaud, Alison E.</creatorcontrib><creatorcontrib>Gataiance, Sharon</creatorcontrib><creatorcontrib>Bhakta, Varsha</creatorcontrib><title>In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall</title><title>BioMed research international</title><addtitle>J Biomed Biotechnol</addtitle><description>Alpha-1 acid glycoprotein (AGP) is a highly glycosylated plasma protein that exerts vasoprotective effects. We hypothesized that AGP’s N-linked glycans govern its rate of clearance from the circulation, and followed the disappearance of different forms of radiolabeled human AGP from the plasma of rabbits and mice. Enzymatic deglycosylation of human plasma-derived AGP (pdAGP) by Peptide: N-Glycosidase F yielded a mixture of differentially deglycosylated forms (PNGase-AGP), while the introduction of five Asn to Gln mutations in recombinant Pichia pastoris-derived AGP (rAGP-N(5)Q) eliminated N-linked glycosylation. PNGase-AGP was cleared from the rabbit circulation 9-fold, and rAGP-N(5)Q, 46-fold more rapidly than pdAGP, primarily via a renal route. Pichia pastoris-derived wild-type rAGP differed from pdAGP in expressing mannose-terminated glycans, and, like neuraminidase-treated pdAGP, was more rapidly removed from the rabbit circulation than rAGP-N(5)Q. Systemic hyaluronidase treatment of mice transiently decreased pdAGP clearance. AGP administration to mice reduced vascular binding of hyaluronic acid binding protein in the liver microcirculation and increased its plasma levels. Our results support a critical role of N-linked glycosylation of AGP in regulating its in vivo clearance and an influence of a hyaluronidase-sensitive component of the vessel wall on its transendothelial passage.</description><subject>Amino Acid Substitution</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Cell culture</subject><subject>Deglycosylation</subject><subject>Female</subject><subject>Glycosylation</subject><subject>Health sciences</subject><subject>Humans</subject><subject>Hyaluronan Receptors - metabolism</subject><subject>Hyaluronoglucosaminidase - administration & dosage</subject><subject>Hyaluronoglucosaminidase - metabolism</subject><subject>Lectins, C-Type - metabolism</subject><subject>Life sciences</subject><subject>Ligands</subject><subject>Liver - blood supply</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mannose-Binding Lectins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neuraminidase - metabolism</subject><subject>Orosomucoid - administration & dosage</subject><subject>Orosomucoid - chemistry</subject><subject>Orosomucoid - pharmacokinetics</subject><subject>Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism</subject><subject>Permeability</subject><subject>Pichia - genetics</subject><subject>Pichia pastoris</subject><subject>R&D</subject><subject>Rabbits</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Recombinant Proteins - administration & dosage</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - pharmacokinetics</subject><subject>Research & development</subject><subject>Rodents</subject><issn>1110-7243</issn><issn>2314-6133</issn><issn>1110-7251</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0U1vFCEYB_CJ0dhaPXnWkHgxmrHAvDBzMdlsap1koxetR8IwDy6VhRWY1v0e_cBldtaNejEcIPDjD0-eLHtO8DtCquqcYkLPaUtZgR9kp4QQnDNakYfHdVmcZE9CuMaYsKZuH2cnlFZlhTE9ze46i670jUNLA8ILKwE5hRZmuxY5QQupB3RpdtJtvYugLeoC6qwyIyQ5oH6H4hrQxa8INk4XuxjQp3yl7Q84XAw7I6J2Fgm795PobAQv5H77Vsf1PuQKQgCDvgljnmaPlDABnh3ms-zrh4svy4_56vNlt1ysclnWNOakErIhlOJeDD2RlWxVCUoOZVnXeCgo9KwVPTSUYdkChVoNRAmqGBtkLSpanGXv59zt2G9gkKkILwzfer0Rfsed0PzvE6vX_Lu74UVBScXaFPD6EODdzxFC5BsdJBgjLLgxcIJpg2lbN9Nbr_6h1270NpWXVBp1wXCT1NtZSe9C8KCOnyGYT93mU7f53O2kX_75_6P93d4E3sxgre0gbvV_0l7MGBIBJY64rHHbsOIe_le8WQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Eltringham-Smith, Louise J.</creator><creator>McCurdy, Teresa R.</creator><creator>Sheffield, William P.</creator><creator>Fox-Robichaud, Alison E.</creator><creator>Gataiance, Sharon</creator><creator>Bhakta, Varsha</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0698-072X</orcidid><orcidid>https://orcid.org/0000-0002-5870-8189</orcidid></search><sort><creationdate>20120101</creationdate><title>In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall</title><author>Eltringham-Smith, Louise J. ; McCurdy, Teresa R. ; Sheffield, William P. ; Fox-Robichaud, Alison E. ; Gataiance, Sharon ; Bhakta, Varsha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Substitution</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Cell culture</topic><topic>Deglycosylation</topic><topic>Female</topic><topic>Glycosylation</topic><topic>Health sciences</topic><topic>Humans</topic><topic>Hyaluronan Receptors - metabolism</topic><topic>Hyaluronoglucosaminidase - administration & dosage</topic><topic>Hyaluronoglucosaminidase - metabolism</topic><topic>Lectins, C-Type - metabolism</topic><topic>Life sciences</topic><topic>Ligands</topic><topic>Liver - blood supply</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mannose-Binding Lectins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neuraminidase - metabolism</topic><topic>Orosomucoid - administration & dosage</topic><topic>Orosomucoid - chemistry</topic><topic>Orosomucoid - pharmacokinetics</topic><topic>Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism</topic><topic>Permeability</topic><topic>Pichia - genetics</topic><topic>Pichia pastoris</topic><topic>R&D</topic><topic>Rabbits</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Recombinant Proteins - administration & dosage</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - pharmacokinetics</topic><topic>Research & development</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eltringham-Smith, Louise J.</creatorcontrib><creatorcontrib>McCurdy, Teresa R.</creatorcontrib><creatorcontrib>Sheffield, William P.</creatorcontrib><creatorcontrib>Fox-Robichaud, Alison E.</creatorcontrib><creatorcontrib>Gataiance, Sharon</creatorcontrib><creatorcontrib>Bhakta, Varsha</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eltringham-Smith, Louise J.</au><au>McCurdy, Teresa R.</au><au>Sheffield, William P.</au><au>Fox-Robichaud, Alison E.</au><au>Gataiance, Sharon</au><au>Bhakta, Varsha</au><au>Butenas, Saulius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall</atitle><jtitle>BioMed research international</jtitle><addtitle>J Biomed Biotechnol</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1110-7243</issn><issn>2314-6133</issn><eissn>1110-7251</eissn><eissn>2314-6141</eissn><abstract>Alpha-1 acid glycoprotein (AGP) is a highly glycosylated plasma protein that exerts vasoprotective effects. We hypothesized that AGP’s N-linked glycans govern its rate of clearance from the circulation, and followed the disappearance of different forms of radiolabeled human AGP from the plasma of rabbits and mice. Enzymatic deglycosylation of human plasma-derived AGP (pdAGP) by Peptide: N-Glycosidase F yielded a mixture of differentially deglycosylated forms (PNGase-AGP), while the introduction of five Asn to Gln mutations in recombinant Pichia pastoris-derived AGP (rAGP-N(5)Q) eliminated N-linked glycosylation. PNGase-AGP was cleared from the rabbit circulation 9-fold, and rAGP-N(5)Q, 46-fold more rapidly than pdAGP, primarily via a renal route. Pichia pastoris-derived wild-type rAGP differed from pdAGP in expressing mannose-terminated glycans, and, like neuraminidase-treated pdAGP, was more rapidly removed from the rabbit circulation than rAGP-N(5)Q. Systemic hyaluronidase treatment of mice transiently decreased pdAGP clearance. AGP administration to mice reduced vascular binding of hyaluronic acid binding protein in the liver microcirculation and increased its plasma levels. Our results support a critical role of N-linked glycosylation of AGP in regulating its in vivo clearance and an influence of a hyaluronidase-sensitive component of the vessel wall on its transendothelial passage.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>22545002</pmid><doi>10.1155/2012/292730</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0698-072X</orcidid><orcidid>https://orcid.org/0000-0002-5870-8189</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-7243 |
ispartof | BioMed research international, 2012-01, Vol.2012 (2012), p.1-11 |
issn | 1110-7243 2314-6133 1110-7251 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3321579 |
source | Publicly Available Content Database; Wiley Open Access; PubMed Central |
subjects | Amino Acid Substitution Analysis of Variance Animals Cell culture Deglycosylation Female Glycosylation Health sciences Humans Hyaluronan Receptors - metabolism Hyaluronoglucosaminidase - administration & dosage Hyaluronoglucosaminidase - metabolism Lectins, C-Type - metabolism Life sciences Ligands Liver - blood supply Liver - metabolism Male Mannose-Binding Lectins - metabolism Mice Mice, Inbred C57BL Neuraminidase - metabolism Orosomucoid - administration & dosage Orosomucoid - chemistry Orosomucoid - pharmacokinetics Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism Permeability Pichia - genetics Pichia pastoris R&D Rabbits Receptors, Cell Surface - metabolism Recombinant Proteins - administration & dosage Recombinant Proteins - chemistry Recombinant Proteins - pharmacokinetics Research & development Rodents |
title | In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Clearance%20of%20Alpha-1%20Acid%20Glycoprotein%20Is%20Influenced%20by%20the%20Extent%20of%20Its%20N-Linked%20Glycosylation%20and%20by%20Its%20Interaction%20with%20the%20Vessel%20Wall&rft.jtitle=BioMed%20research%20international&rft.au=Eltringham-Smith,%20Louise%20J.&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1110-7243&rft.eissn=1110-7251&rft_id=info:doi/10.1155/2012/292730&rft_dat=%3Cproquest_pubme%3E2646679221%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-15ac81220badb1c5c9f4efcd44660d32eb79abe8270c9e2e6fd1fa2f77dc6a523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010163708&rft_id=info:pmid/22545002&rfr_iscdi=true |