Loading…

Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation

The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nanogap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2012-04, Vol.12 (4), p.1757-1764
Main Authors: Mock, Jack J, Hill, Ryan T, Tsai, Yu-Ju, Chilkoti, Ashutosh, Smith, David R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3
cites cdi_FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3
container_end_page 1764
container_issue 4
container_start_page 1757
container_title Nano letters
container_volume 12
creator Mock, Jack J
Hill, Ryan T
Tsai, Yu-Ju
Chilkoti, Ashutosh
Smith, David R
description The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nanogap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity.
doi_str_mv 10.1021/nl204596h
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3324644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762049464</sourcerecordid><originalsourceid>FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3</originalsourceid><addsrcrecordid>eNptkV1rFDEUhgdR7Ide-AckN4K9GM3XzDY3gmy3trBo0YqX4eRMpk3JJNtkZumKP96UrmsFr3LCeXjPec9bVa8YfccoZ--D51Q2qr1-Uu2zRtC6VYo_3dXHcq86yPmGUqpEQ59Xe5xLrmgj9qtfFykaF67IySbA4BC835DLKYDxlixj-buftiPfptQDWnLhIQ8xkK82xwABbSaxJ6fOD_U8Titf0M8Q4grS6NCXrtmQxRqCzWjDSH7A2pLFHboRRhfDi-pZDz7bl9v3sPp-uricn9XLL5_O5x-XNTRCjDV2iMUJImupoMUplxKEBDXrBCCKmZGNlaw3YBppkHNmsG-5NR1n9hitOKw-POiuJjPY7n6VBF6vkhsgbXQEp__tBHetr-JaC8FlK2UReLsVSPF2snnUgyuOvC_O4pQ1m7UlAVXYgh49oJhizsn2uzGM6vu09C6twr5-vNeO_BNPAd5sAcglij6Vk7v8l2tmqpXqEQeY9U2cUijn_M_A39e9rDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762049464</pqid></control><display><type>article</type><title>Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Mock, Jack J ; Hill, Ryan T ; Tsai, Yu-Ju ; Chilkoti, Ashutosh ; Smith, David R</creator><creatorcontrib>Mock, Jack J ; Hill, Ryan T ; Tsai, Yu-Ju ; Chilkoti, Ashutosh ; Smith, David R</creatorcontrib><description>The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nanogap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl204596h</identifier><identifier>PMID: 22429053</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electric fields ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Evanescent waves ; Exact sciences and technology ; Excitation ; Gold ; Gold - chemistry ; Materials science ; Membranes, Artificial ; Metal Nanoparticles - chemistry ; Molecular Dynamics Simulation ; Nanocrystalline materials ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Particle Size ; Physics ; Plasmons ; Spectra ; Surface and interface electron states ; Surface Plasmon Resonance ; Surface Properties ; Thin films</subject><ispartof>Nano letters, 2012-04, Vol.12 (4), p.1757-1764</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3</citedby><cites>FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25796493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22429053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mock, Jack J</creatorcontrib><creatorcontrib>Hill, Ryan T</creatorcontrib><creatorcontrib>Tsai, Yu-Ju</creatorcontrib><creatorcontrib>Chilkoti, Ashutosh</creatorcontrib><creatorcontrib>Smith, David R</creatorcontrib><title>Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nanogap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity.</description><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric fields</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Evanescent waves</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Materials science</subject><subject>Membranes, Artificial</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanocrystalline materials</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Plasmons</subject><subject>Spectra</subject><subject>Surface and interface electron states</subject><subject>Surface Plasmon Resonance</subject><subject>Surface Properties</subject><subject>Thin films</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkV1rFDEUhgdR7Ide-AckN4K9GM3XzDY3gmy3trBo0YqX4eRMpk3JJNtkZumKP96UrmsFr3LCeXjPec9bVa8YfccoZ--D51Q2qr1-Uu2zRtC6VYo_3dXHcq86yPmGUqpEQ59Xe5xLrmgj9qtfFykaF67IySbA4BC835DLKYDxlixj-buftiPfptQDWnLhIQ8xkK82xwABbSaxJ6fOD_U8Titf0M8Q4grS6NCXrtmQxRqCzWjDSH7A2pLFHboRRhfDi-pZDz7bl9v3sPp-uricn9XLL5_O5x-XNTRCjDV2iMUJImupoMUplxKEBDXrBCCKmZGNlaw3YBppkHNmsG-5NR1n9hitOKw-POiuJjPY7n6VBF6vkhsgbXQEp__tBHetr-JaC8FlK2UReLsVSPF2snnUgyuOvC_O4pQ1m7UlAVXYgh49oJhizsn2uzGM6vu09C6twr5-vNeO_BNPAd5sAcglij6Vk7v8l2tmqpXqEQeY9U2cUijn_M_A39e9rDg</recordid><startdate>20120411</startdate><enddate>20120411</enddate><creator>Mock, Jack J</creator><creator>Hill, Ryan T</creator><creator>Tsai, Yu-Ju</creator><creator>Chilkoti, Ashutosh</creator><creator>Smith, David R</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20120411</creationdate><title>Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation</title><author>Mock, Jack J ; Hill, Ryan T ; Tsai, Yu-Ju ; Chilkoti, Ashutosh ; Smith, David R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric fields</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Evanescent waves</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Materials science</topic><topic>Membranes, Artificial</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanocrystalline materials</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Plasmons</topic><topic>Spectra</topic><topic>Surface and interface electron states</topic><topic>Surface Plasmon Resonance</topic><topic>Surface Properties</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mock, Jack J</creatorcontrib><creatorcontrib>Hill, Ryan T</creatorcontrib><creatorcontrib>Tsai, Yu-Ju</creatorcontrib><creatorcontrib>Chilkoti, Ashutosh</creatorcontrib><creatorcontrib>Smith, David R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mock, Jack J</au><au>Hill, Ryan T</au><au>Tsai, Yu-Ju</au><au>Chilkoti, Ashutosh</au><au>Smith, David R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-04-11</date><risdate>2012</risdate><volume>12</volume><issue>4</issue><spage>1757</spage><epage>1764</epage><pages>1757-1764</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nanogap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22429053</pmid><doi>10.1021/nl204596h</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2012-04, Vol.12 (4), p.1757-1764
issn 1530-6984
1530-6992
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3324644
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Electric fields
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Evanescent waves
Exact sciences and technology
Excitation
Gold
Gold - chemistry
Materials science
Membranes, Artificial
Metal Nanoparticles - chemistry
Molecular Dynamics Simulation
Nanocrystalline materials
Nanoparticles
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Particle Size
Physics
Plasmons
Spectra
Surface and interface electron states
Surface Plasmon Resonance
Surface Properties
Thin films
title Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Dynamically%20Tunable%20Localized%20Surface%20Plasmon%20Resonances%20of%20Film-Coupled%20Nanoparticles%20by%20Evanescent%20Wave%20Excitation&rft.jtitle=Nano%20letters&rft.au=Mock,%20Jack%20J&rft.date=2012-04-11&rft.volume=12&rft.issue=4&rft.spage=1757&rft.epage=1764&rft.pages=1757-1764&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl204596h&rft_dat=%3Cproquest_pubme%3E1762049464%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762049464&rft_id=info:pmid/22429053&rfr_iscdi=true