Loading…
Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation
The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nanogap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme...
Saved in:
Published in: | Nano letters 2012-04, Vol.12 (4), p.1757-1764 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3 |
---|---|
cites | cdi_FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3 |
container_end_page | 1764 |
container_issue | 4 |
container_start_page | 1757 |
container_title | Nano letters |
container_volume | 12 |
creator | Mock, Jack J Hill, Ryan T Tsai, Yu-Ju Chilkoti, Ashutosh Smith, David R |
description | The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nanogap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity. |
doi_str_mv | 10.1021/nl204596h |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3324644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762049464</sourcerecordid><originalsourceid>FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3</originalsourceid><addsrcrecordid>eNptkV1rFDEUhgdR7Ide-AckN4K9GM3XzDY3gmy3trBo0YqX4eRMpk3JJNtkZumKP96UrmsFr3LCeXjPec9bVa8YfccoZ--D51Q2qr1-Uu2zRtC6VYo_3dXHcq86yPmGUqpEQ59Xe5xLrmgj9qtfFykaF67IySbA4BC835DLKYDxlixj-buftiPfptQDWnLhIQ8xkK82xwABbSaxJ6fOD_U8Titf0M8Q4grS6NCXrtmQxRqCzWjDSH7A2pLFHboRRhfDi-pZDz7bl9v3sPp-uricn9XLL5_O5x-XNTRCjDV2iMUJImupoMUplxKEBDXrBCCKmZGNlaw3YBppkHNmsG-5NR1n9hitOKw-POiuJjPY7n6VBF6vkhsgbXQEp__tBHetr-JaC8FlK2UReLsVSPF2snnUgyuOvC_O4pQ1m7UlAVXYgh49oJhizsn2uzGM6vu09C6twr5-vNeO_BNPAd5sAcglij6Vk7v8l2tmqpXqEQeY9U2cUijn_M_A39e9rDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762049464</pqid></control><display><type>article</type><title>Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Mock, Jack J ; Hill, Ryan T ; Tsai, Yu-Ju ; Chilkoti, Ashutosh ; Smith, David R</creator><creatorcontrib>Mock, Jack J ; Hill, Ryan T ; Tsai, Yu-Ju ; Chilkoti, Ashutosh ; Smith, David R</creatorcontrib><description>The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nanogap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl204596h</identifier><identifier>PMID: 22429053</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electric fields ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Evanescent waves ; Exact sciences and technology ; Excitation ; Gold ; Gold - chemistry ; Materials science ; Membranes, Artificial ; Metal Nanoparticles - chemistry ; Molecular Dynamics Simulation ; Nanocrystalline materials ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Particle Size ; Physics ; Plasmons ; Spectra ; Surface and interface electron states ; Surface Plasmon Resonance ; Surface Properties ; Thin films</subject><ispartof>Nano letters, 2012-04, Vol.12 (4), p.1757-1764</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3</citedby><cites>FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25796493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22429053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mock, Jack J</creatorcontrib><creatorcontrib>Hill, Ryan T</creatorcontrib><creatorcontrib>Tsai, Yu-Ju</creatorcontrib><creatorcontrib>Chilkoti, Ashutosh</creatorcontrib><creatorcontrib>Smith, David R</creatorcontrib><title>Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nanogap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity.</description><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric fields</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Evanescent waves</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Materials science</subject><subject>Membranes, Artificial</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanocrystalline materials</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Plasmons</subject><subject>Spectra</subject><subject>Surface and interface electron states</subject><subject>Surface Plasmon Resonance</subject><subject>Surface Properties</subject><subject>Thin films</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkV1rFDEUhgdR7Ide-AckN4K9GM3XzDY3gmy3trBo0YqX4eRMpk3JJNtkZumKP96UrmsFr3LCeXjPec9bVa8YfccoZ--D51Q2qr1-Uu2zRtC6VYo_3dXHcq86yPmGUqpEQ59Xe5xLrmgj9qtfFykaF67IySbA4BC835DLKYDxlixj-buftiPfptQDWnLhIQ8xkK82xwABbSaxJ6fOD_U8Titf0M8Q4grS6NCXrtmQxRqCzWjDSH7A2pLFHboRRhfDi-pZDz7bl9v3sPp-uricn9XLL5_O5x-XNTRCjDV2iMUJImupoMUplxKEBDXrBCCKmZGNlaw3YBppkHNmsG-5NR1n9hitOKw-POiuJjPY7n6VBF6vkhsgbXQEp__tBHetr-JaC8FlK2UReLsVSPF2snnUgyuOvC_O4pQ1m7UlAVXYgh49oJhizsn2uzGM6vu09C6twr5-vNeO_BNPAd5sAcglij6Vk7v8l2tmqpXqEQeY9U2cUijn_M_A39e9rDg</recordid><startdate>20120411</startdate><enddate>20120411</enddate><creator>Mock, Jack J</creator><creator>Hill, Ryan T</creator><creator>Tsai, Yu-Ju</creator><creator>Chilkoti, Ashutosh</creator><creator>Smith, David R</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20120411</creationdate><title>Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation</title><author>Mock, Jack J ; Hill, Ryan T ; Tsai, Yu-Ju ; Chilkoti, Ashutosh ; Smith, David R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric fields</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Evanescent waves</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Materials science</topic><topic>Membranes, Artificial</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanocrystalline materials</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Plasmons</topic><topic>Spectra</topic><topic>Surface and interface electron states</topic><topic>Surface Plasmon Resonance</topic><topic>Surface Properties</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mock, Jack J</creatorcontrib><creatorcontrib>Hill, Ryan T</creatorcontrib><creatorcontrib>Tsai, Yu-Ju</creatorcontrib><creatorcontrib>Chilkoti, Ashutosh</creatorcontrib><creatorcontrib>Smith, David R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mock, Jack J</au><au>Hill, Ryan T</au><au>Tsai, Yu-Ju</au><au>Chilkoti, Ashutosh</au><au>Smith, David R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-04-11</date><risdate>2012</risdate><volume>12</volume><issue>4</issue><spage>1757</spage><epage>1764</epage><pages>1757-1764</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nanogap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22429053</pmid><doi>10.1021/nl204596h</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2012-04, Vol.12 (4), p.1757-1764 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3324644 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electric fields Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Evanescent waves Exact sciences and technology Excitation Gold Gold - chemistry Materials science Membranes, Artificial Metal Nanoparticles - chemistry Molecular Dynamics Simulation Nanocrystalline materials Nanoparticles Nanoscale materials and structures: fabrication and characterization Nanostructure Particle Size Physics Plasmons Spectra Surface and interface electron states Surface Plasmon Resonance Surface Properties Thin films |
title | Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Dynamically%20Tunable%20Localized%20Surface%20Plasmon%20Resonances%20of%20Film-Coupled%20Nanoparticles%20by%20Evanescent%20Wave%20Excitation&rft.jtitle=Nano%20letters&rft.au=Mock,%20Jack%20J&rft.date=2012-04-11&rft.volume=12&rft.issue=4&rft.spage=1757&rft.epage=1764&rft.pages=1757-1764&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl204596h&rft_dat=%3Cproquest_pubme%3E1762049464%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a533t-cdcc530cc16030045244a34a97d3acc37b45e41fbab54bc221bcf62ebd21e8ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762049464&rft_id=info:pmid/22429053&rfr_iscdi=true |