Loading…
Reversible Control of Third-Order Optical Nonlinearity of DNA Decorated Carbon Nanotube Hybrids
Positive and negative third-order optical nonlinearities have been investigated in single-stranded DNA wrapped semiconducting single-walled carbon nanotubes. It is found that the redox reactions of hydrogen peroxide can reverse the sign of the third-order nonlinearity. The observation proves that th...
Saved in:
Published in: | Journal of physical chemistry. C 2010-12, Vol.114 (51), p.22697-22702 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Positive and negative third-order optical nonlinearities have been investigated in single-stranded DNA wrapped semiconducting single-walled carbon nanotubes. It is found that the redox reactions of hydrogen peroxide can reverse the sign of the third-order nonlinearity. The observation proves that the lowest unoccupied molecular orbital has a lower density of electronic states than that of the highest occupied molecular orbital. A three-energy-level model is used to explain the effect of the redox reactions. Raman spectroscopy has also been used to investigate the interaction between single-walled carbon nanotubes and single-stranded DNA. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp107726j |