Loading…

Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays

Proteins represent the most sophisticated building blocks available to an organism and to the laboratory chemist. Yet, in contrast to nearly all other types of molecular building blocks, the designed self-assembly of proteins has largely been inaccessible because of the chemical and structural heter...

Full description

Saved in:
Bibliographic Details
Published in:Nature chemistry 2012-03, Vol.4 (5), p.375-382
Main Authors: Brodin, Jeffrey D., Ambroggio, X. I., Tang, Chunyan, Parent, Kristin N., Baker, Timothy S., Tezcan, F. Akif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-da5369a22feb69e8e63ef782e23eca2b7bb91237796c702af105d831001157f03
cites cdi_FETCH-LOGICAL-c508t-da5369a22feb69e8e63ef782e23eca2b7bb91237796c702af105d831001157f03
container_end_page 382
container_issue 5
container_start_page 375
container_title Nature chemistry
container_volume 4
creator Brodin, Jeffrey D.
Ambroggio, X. I.
Tang, Chunyan
Parent, Kristin N.
Baker, Timothy S.
Tezcan, F. Akif
description Proteins represent the most sophisticated building blocks available to an organism and to the laboratory chemist. Yet, in contrast to nearly all other types of molecular building blocks, the designed self-assembly of proteins has largely been inaccessible because of the chemical and structural heterogeneity of protein surfaces. To circumvent the challenge of programming extensive non-covalent interactions to control protein self-assembly, we have previously exploited the directionality and strength of metal coordination interactions to guide the formation of closed, homoligomeric protein assemblies. Here, we extend this strategy to the generation of periodic protein arrays. We show that a monomeric protein with properly oriented coordination motifs on its surface can arrange, on metal binding, into one-dimensional nanotubes and two- or three-dimensional crystalline arrays with dimensions that collectively span nearly the entire nano- and micrometre scale. The assembly of these arrays is tuned predictably by external stimuli, such as metal concentration and pH. The self-assembly of proteins into ordered yet dynamic nanoscale architectures is a crucial biological process and an inspiration for supramolecular chemistry, but has remained largely inaccessible synthetically. A monomeric protein has now been prepared that assembles with zinc ions into one-, two- and three-dimensional crystalline arrays with nano- and microscale order.
doi_str_mv 10.1038/nchem.1290
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3335442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679380111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-da5369a22feb69e8e63ef782e23eca2b7bb91237796c702af105d831001157f03</originalsourceid><addsrcrecordid>eNplkctKxDAUhoMo3jc-gATc6XTMpWnajSDiDRQ3ug5peup0aJMxySjz9mYcHRQXIeGcL99J-BE6omRMCS_PrZnAMKasIhtol0ohspzn1eb6zMkO2gthSkghOC220Q5jgqUld9H0EaLus6bzYCI0I7x0dUb3_QLHudV1D1iHAEOdCq7FzkI2wvHDZVjbBseJB0i3B7Chc1b32PhFSMa-s4Bn3kXoLNbe60U4QFut7gMcfu_76OXm-vnqLnt4ur2_unzIjCBlzBoteFFpxlqoiwpKKDi0smTAOBjNalnXFWVcyqowkjDdUiKaklNCKBWyJXwfXay8s3k9QGPARq97NfPdoP1COd2pvx3bTdSre1ecc5HnLAlOvgXevc0hRDV1c58-FxQltJQkZ1WZqNMVZbwLwUO7nkCJWuaivnJRy1wSfPz7TWv0J4gEnK2AkFr2Ffzvmf90n2Xjmd8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018704298</pqid></control><display><type>article</type><title>Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays</title><source>Nature</source><creator>Brodin, Jeffrey D. ; Ambroggio, X. I. ; Tang, Chunyan ; Parent, Kristin N. ; Baker, Timothy S. ; Tezcan, F. Akif</creator><creatorcontrib>Brodin, Jeffrey D. ; Ambroggio, X. I. ; Tang, Chunyan ; Parent, Kristin N. ; Baker, Timothy S. ; Tezcan, F. Akif</creatorcontrib><description>Proteins represent the most sophisticated building blocks available to an organism and to the laboratory chemist. Yet, in contrast to nearly all other types of molecular building blocks, the designed self-assembly of proteins has largely been inaccessible because of the chemical and structural heterogeneity of protein surfaces. To circumvent the challenge of programming extensive non-covalent interactions to control protein self-assembly, we have previously exploited the directionality and strength of metal coordination interactions to guide the formation of closed, homoligomeric protein assemblies. Here, we extend this strategy to the generation of periodic protein arrays. We show that a monomeric protein with properly oriented coordination motifs on its surface can arrange, on metal binding, into one-dimensional nanotubes and two- or three-dimensional crystalline arrays with dimensions that collectively span nearly the entire nano- and micrometre scale. The assembly of these arrays is tuned predictably by external stimuli, such as metal concentration and pH. The self-assembly of proteins into ordered yet dynamic nanoscale architectures is a crucial biological process and an inspiration for supramolecular chemistry, but has remained largely inaccessible synthetically. A monomeric protein has now been prepared that assembles with zinc ions into one-, two- and three-dimensional crystalline arrays with nano- and microscale order.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.1290</identifier><identifier>PMID: 22522257</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/298/923/966 ; 639/638/92/612 ; Analytical Chemistry ; Biochemistry ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Crystallization ; Crystallography ; Cytochrome ; Design ; Heterogeneity ; Hydrogen-Ion Concentration ; Inorganic Chemistry ; Metal concentrations ; Metals ; Methods ; Nanotechnology ; Nanotubes ; Organic Chemistry ; Physical Chemistry ; Protein Multimerization ; Proteins ; Proteins - chemistry</subject><ispartof>Nature chemistry, 2012-03, Vol.4 (5), p.375-382</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group May 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-da5369a22feb69e8e63ef782e23eca2b7bb91237796c702af105d831001157f03</citedby><cites>FETCH-LOGICAL-c508t-da5369a22feb69e8e63ef782e23eca2b7bb91237796c702af105d831001157f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22522257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brodin, Jeffrey D.</creatorcontrib><creatorcontrib>Ambroggio, X. I.</creatorcontrib><creatorcontrib>Tang, Chunyan</creatorcontrib><creatorcontrib>Parent, Kristin N.</creatorcontrib><creatorcontrib>Baker, Timothy S.</creatorcontrib><creatorcontrib>Tezcan, F. Akif</creatorcontrib><title>Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Proteins represent the most sophisticated building blocks available to an organism and to the laboratory chemist. Yet, in contrast to nearly all other types of molecular building blocks, the designed self-assembly of proteins has largely been inaccessible because of the chemical and structural heterogeneity of protein surfaces. To circumvent the challenge of programming extensive non-covalent interactions to control protein self-assembly, we have previously exploited the directionality and strength of metal coordination interactions to guide the formation of closed, homoligomeric protein assemblies. Here, we extend this strategy to the generation of periodic protein arrays. We show that a monomeric protein with properly oriented coordination motifs on its surface can arrange, on metal binding, into one-dimensional nanotubes and two- or three-dimensional crystalline arrays with dimensions that collectively span nearly the entire nano- and micrometre scale. The assembly of these arrays is tuned predictably by external stimuli, such as metal concentration and pH. The self-assembly of proteins into ordered yet dynamic nanoscale architectures is a crucial biological process and an inspiration for supramolecular chemistry, but has remained largely inaccessible synthetically. A monomeric protein has now been prepared that assembles with zinc ions into one-, two- and three-dimensional crystalline arrays with nano- and microscale order.</description><subject>639/638/298/923/966</subject><subject>639/638/92/612</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Crystallization</subject><subject>Crystallography</subject><subject>Cytochrome</subject><subject>Design</subject><subject>Heterogeneity</subject><subject>Hydrogen-Ion Concentration</subject><subject>Inorganic Chemistry</subject><subject>Metal concentrations</subject><subject>Metals</subject><subject>Methods</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNplkctKxDAUhoMo3jc-gATc6XTMpWnajSDiDRQ3ug5peup0aJMxySjz9mYcHRQXIeGcL99J-BE6omRMCS_PrZnAMKasIhtol0ohspzn1eb6zMkO2gthSkghOC220Q5jgqUld9H0EaLus6bzYCI0I7x0dUb3_QLHudV1D1iHAEOdCq7FzkI2wvHDZVjbBseJB0i3B7Chc1b32PhFSMa-s4Bn3kXoLNbe60U4QFut7gMcfu_76OXm-vnqLnt4ur2_unzIjCBlzBoteFFpxlqoiwpKKDi0smTAOBjNalnXFWVcyqowkjDdUiKaklNCKBWyJXwfXay8s3k9QGPARq97NfPdoP1COd2pvx3bTdSre1ecc5HnLAlOvgXevc0hRDV1c58-FxQltJQkZ1WZqNMVZbwLwUO7nkCJWuaivnJRy1wSfPz7TWv0J4gEnK2AkFr2Ffzvmf90n2Xjmd8</recordid><startdate>20120304</startdate><enddate>20120304</enddate><creator>Brodin, Jeffrey D.</creator><creator>Ambroggio, X. I.</creator><creator>Tang, Chunyan</creator><creator>Parent, Kristin N.</creator><creator>Baker, Timothy S.</creator><creator>Tezcan, F. Akif</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope></search><sort><creationdate>20120304</creationdate><title>Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays</title><author>Brodin, Jeffrey D. ; Ambroggio, X. I. ; Tang, Chunyan ; Parent, Kristin N. ; Baker, Timothy S. ; Tezcan, F. Akif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-da5369a22feb69e8e63ef782e23eca2b7bb91237796c702af105d831001157f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/638/298/923/966</topic><topic>639/638/92/612</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Crystallization</topic><topic>Crystallography</topic><topic>Cytochrome</topic><topic>Design</topic><topic>Heterogeneity</topic><topic>Hydrogen-Ion Concentration</topic><topic>Inorganic Chemistry</topic><topic>Metal concentrations</topic><topic>Metals</topic><topic>Methods</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brodin, Jeffrey D.</creatorcontrib><creatorcontrib>Ambroggio, X. I.</creatorcontrib><creatorcontrib>Tang, Chunyan</creatorcontrib><creatorcontrib>Parent, Kristin N.</creatorcontrib><creatorcontrib>Baker, Timothy S.</creatorcontrib><creatorcontrib>Tezcan, F. Akif</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brodin, Jeffrey D.</au><au>Ambroggio, X. I.</au><au>Tang, Chunyan</au><au>Parent, Kristin N.</au><au>Baker, Timothy S.</au><au>Tezcan, F. Akif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2012-03-04</date><risdate>2012</risdate><volume>4</volume><issue>5</issue><spage>375</spage><epage>382</epage><pages>375-382</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Proteins represent the most sophisticated building blocks available to an organism and to the laboratory chemist. Yet, in contrast to nearly all other types of molecular building blocks, the designed self-assembly of proteins has largely been inaccessible because of the chemical and structural heterogeneity of protein surfaces. To circumvent the challenge of programming extensive non-covalent interactions to control protein self-assembly, we have previously exploited the directionality and strength of metal coordination interactions to guide the formation of closed, homoligomeric protein assemblies. Here, we extend this strategy to the generation of periodic protein arrays. We show that a monomeric protein with properly oriented coordination motifs on its surface can arrange, on metal binding, into one-dimensional nanotubes and two- or three-dimensional crystalline arrays with dimensions that collectively span nearly the entire nano- and micrometre scale. The assembly of these arrays is tuned predictably by external stimuli, such as metal concentration and pH. The self-assembly of proteins into ordered yet dynamic nanoscale architectures is a crucial biological process and an inspiration for supramolecular chemistry, but has remained largely inaccessible synthetically. A monomeric protein has now been prepared that assembles with zinc ions into one-, two- and three-dimensional crystalline arrays with nano- and microscale order.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22522257</pmid><doi>10.1038/nchem.1290</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2012-03, Vol.4 (5), p.375-382
issn 1755-4330
1755-4349
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3335442
source Nature
subjects 639/638/298/923/966
639/638/92/612
Analytical Chemistry
Biochemistry
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Crystallization
Crystallography
Cytochrome
Design
Heterogeneity
Hydrogen-Ion Concentration
Inorganic Chemistry
Metal concentrations
Metals
Methods
Nanotechnology
Nanotubes
Organic Chemistry
Physical Chemistry
Protein Multimerization
Proteins
Proteins - chemistry
title Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal-directed,%20chemically%20tunable%20assembly%20of%20one-,%20two-%20and%20three-dimensional%20crystalline%20protein%20arrays&rft.jtitle=Nature%20chemistry&rft.au=Brodin,%20Jeffrey%20D.&rft.date=2012-03-04&rft.volume=4&rft.issue=5&rft.spage=375&rft.epage=382&rft.pages=375-382&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.1290&rft_dat=%3Cproquest_pubme%3E2679380111%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-da5369a22feb69e8e63ef782e23eca2b7bb91237796c702af105d831001157f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1018704298&rft_id=info:pmid/22522257&rfr_iscdi=true