Loading…
Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila
Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmen...
Saved in:
Published in: | Molecular biology of the cell 2012-05, Vol.23 (9), p.1700-1714 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3 |
container_end_page | 1714 |
container_issue | 9 |
container_start_page | 1700 |
container_title | Molecular biology of the cell |
container_volume | 23 |
creator | Reis, Gerald F Yang, Ge Szpankowski, Lukasz Weaver, Carole Shah, Sameer B Robinson, John T Hays, Thomas S Danuser, Gaudenz Goldstein, Lawrence S B |
description | Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmental nerve axons. Computational analyses of a large number of moving vesicles in defined genetic backgrounds with partial reduction or overexpression of motor proteins enabled us to test with high precision existing and new models of motor activity and coordination in vivo. We discovered several previously unknown features of vesicle movement, including a surprising dependence of anterograde APP vesicle movement velocity on the amount of kinesin-1. This finding is largely incompatible with the biophysical properties of kinesin-1 derived from in vitro analyses. Our data also suggest kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and their direction and velocity are controlled at least in part by dynein intermediate chain. |
doi_str_mv | 10.1091/mbc.E11-11-0938 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3338437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1028022235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3</originalsourceid><addsrcrecordid>eNqNUUtv1jAQtBCIlsKZG_KRS1qvnYd9QUJteUhFXOBsbZxNa5TYwU4-8f17HLVUcENa2St7ZrSzw9hrEOcgDFzMvTu_BqhKCaP0E3YKRpmqbnT7tPSiMRU0sj5hL3L-IQTUdds9ZydSKqM72Zyy-CVO5LYJE5_jGhMft-BWHwP3geOvGHDia8KQl5jW_e3gD5EvKfY08P7IbynQ6h3HMHAX52VbcWcXFpbjmH3eSVcp5rjc-QlfsmcjTplePdxn7PuH62-Xn6qbrx8_X76_qZzSzVqh6ztEMdKoR1A0irZpWy2NBCNljc64HlqtEHoiVWMNw4BCYq86TZ1oSZ2xd_e6y9bPNDgKxcVkl-RnTEcb0dt_f4K_s7fxYJVSulZdEXj7IJDiz43yamefHU0TBopbtiCkFrIssvkPKJgWagO6QC_uoa5sJCcaHycCYfdEbUnUEoAttSdaGG_-NvKI_xOh-g0WsqA9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019614918</pqid></control><display><type>article</type><title>Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila</title><source>NCBI_PubMed Central(免费)</source><creator>Reis, Gerald F ; Yang, Ge ; Szpankowski, Lukasz ; Weaver, Carole ; Shah, Sameer B ; Robinson, John T ; Hays, Thomas S ; Danuser, Gaudenz ; Goldstein, Lawrence S B</creator><contributor>Zheng, Yixian</contributor><creatorcontrib>Reis, Gerald F ; Yang, Ge ; Szpankowski, Lukasz ; Weaver, Carole ; Shah, Sameer B ; Robinson, John T ; Hays, Thomas S ; Danuser, Gaudenz ; Goldstein, Lawrence S B ; Zheng, Yixian</creatorcontrib><description>Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmental nerve axons. Computational analyses of a large number of moving vesicles in defined genetic backgrounds with partial reduction or overexpression of motor proteins enabled us to test with high precision existing and new models of motor activity and coordination in vivo. We discovered several previously unknown features of vesicle movement, including a surprising dependence of anterograde APP vesicle movement velocity on the amount of kinesin-1. This finding is largely incompatible with the biophysical properties of kinesin-1 derived from in vitro analyses. Our data also suggest kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and their direction and velocity are controlled at least in part by dynein intermediate chain.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E11-11-0938</identifier><identifier>PMID: 22398725</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Alzheimer's disease ; Amyloid beta-Protein Precursor - metabolism ; Amyloid precursor protein ; Animals ; Axonal transport ; Axonal Transport - physiology ; Axons ; Biological Transport ; Computational Biology ; Computational neuroscience ; Computed tomography ; Data processing ; Drosophila ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Dynactin Complex ; Dynein ; Dyneins - genetics ; Dyneins - metabolism ; Kinesin ; Kinesin - genetics ; Kinesin - metabolism ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Microtubules ; Motor activity ; Motor Activity - physiology ; Nerves ; Transport Vesicles - metabolism ; Vesicles</subject><ispartof>Molecular biology of the cell, 2012-05, Vol.23 (9), p.1700-1714</ispartof><rights>2012 Reis This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3</citedby><cites>FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338437/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338437/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22398725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zheng, Yixian</contributor><creatorcontrib>Reis, Gerald F</creatorcontrib><creatorcontrib>Yang, Ge</creatorcontrib><creatorcontrib>Szpankowski, Lukasz</creatorcontrib><creatorcontrib>Weaver, Carole</creatorcontrib><creatorcontrib>Shah, Sameer B</creatorcontrib><creatorcontrib>Robinson, John T</creatorcontrib><creatorcontrib>Hays, Thomas S</creatorcontrib><creatorcontrib>Danuser, Gaudenz</creatorcontrib><creatorcontrib>Goldstein, Lawrence S B</creatorcontrib><title>Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmental nerve axons. Computational analyses of a large number of moving vesicles in defined genetic backgrounds with partial reduction or overexpression of motor proteins enabled us to test with high precision existing and new models of motor activity and coordination in vivo. We discovered several previously unknown features of vesicle movement, including a surprising dependence of anterograde APP vesicle movement velocity on the amount of kinesin-1. This finding is largely incompatible with the biophysical properties of kinesin-1 derived from in vitro analyses. Our data also suggest kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and their direction and velocity are controlled at least in part by dynein intermediate chain.</description><subject>Alzheimer's disease</subject><subject>Amyloid beta-Protein Precursor - metabolism</subject><subject>Amyloid precursor protein</subject><subject>Animals</subject><subject>Axonal transport</subject><subject>Axonal Transport - physiology</subject><subject>Axons</subject><subject>Biological Transport</subject><subject>Computational Biology</subject><subject>Computational neuroscience</subject><subject>Computed tomography</subject><subject>Data processing</subject><subject>Drosophila</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Dynactin Complex</subject><subject>Dynein</subject><subject>Dyneins - genetics</subject><subject>Dyneins - metabolism</subject><subject>Kinesin</subject><subject>Kinesin - genetics</subject><subject>Kinesin - metabolism</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules</subject><subject>Motor activity</subject><subject>Motor Activity - physiology</subject><subject>Nerves</subject><subject>Transport Vesicles - metabolism</subject><subject>Vesicles</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNUUtv1jAQtBCIlsKZG_KRS1qvnYd9QUJteUhFXOBsbZxNa5TYwU4-8f17HLVUcENa2St7ZrSzw9hrEOcgDFzMvTu_BqhKCaP0E3YKRpmqbnT7tPSiMRU0sj5hL3L-IQTUdds9ZydSKqM72Zyy-CVO5LYJE5_jGhMft-BWHwP3geOvGHDia8KQl5jW_e3gD5EvKfY08P7IbynQ6h3HMHAX52VbcWcXFpbjmH3eSVcp5rjc-QlfsmcjTplePdxn7PuH62-Xn6qbrx8_X76_qZzSzVqh6ztEMdKoR1A0irZpWy2NBCNljc64HlqtEHoiVWMNw4BCYq86TZ1oSZ2xd_e6y9bPNDgKxcVkl-RnTEcb0dt_f4K_s7fxYJVSulZdEXj7IJDiz43yamefHU0TBopbtiCkFrIssvkPKJgWagO6QC_uoa5sJCcaHycCYfdEbUnUEoAttSdaGG_-NvKI_xOh-g0WsqA9</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Reis, Gerald F</creator><creator>Yang, Ge</creator><creator>Szpankowski, Lukasz</creator><creator>Weaver, Carole</creator><creator>Shah, Sameer B</creator><creator>Robinson, John T</creator><creator>Hays, Thomas S</creator><creator>Danuser, Gaudenz</creator><creator>Goldstein, Lawrence S B</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201205</creationdate><title>Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila</title><author>Reis, Gerald F ; Yang, Ge ; Szpankowski, Lukasz ; Weaver, Carole ; Shah, Sameer B ; Robinson, John T ; Hays, Thomas S ; Danuser, Gaudenz ; Goldstein, Lawrence S B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alzheimer's disease</topic><topic>Amyloid beta-Protein Precursor - metabolism</topic><topic>Amyloid precursor protein</topic><topic>Animals</topic><topic>Axonal transport</topic><topic>Axonal Transport - physiology</topic><topic>Axons</topic><topic>Biological Transport</topic><topic>Computational Biology</topic><topic>Computational neuroscience</topic><topic>Computed tomography</topic><topic>Data processing</topic><topic>Drosophila</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Dynactin Complex</topic><topic>Dynein</topic><topic>Dyneins - genetics</topic><topic>Dyneins - metabolism</topic><topic>Kinesin</topic><topic>Kinesin - genetics</topic><topic>Kinesin - metabolism</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules</topic><topic>Motor activity</topic><topic>Motor Activity - physiology</topic><topic>Nerves</topic><topic>Transport Vesicles - metabolism</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reis, Gerald F</creatorcontrib><creatorcontrib>Yang, Ge</creatorcontrib><creatorcontrib>Szpankowski, Lukasz</creatorcontrib><creatorcontrib>Weaver, Carole</creatorcontrib><creatorcontrib>Shah, Sameer B</creatorcontrib><creatorcontrib>Robinson, John T</creatorcontrib><creatorcontrib>Hays, Thomas S</creatorcontrib><creatorcontrib>Danuser, Gaudenz</creatorcontrib><creatorcontrib>Goldstein, Lawrence S B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reis, Gerald F</au><au>Yang, Ge</au><au>Szpankowski, Lukasz</au><au>Weaver, Carole</au><au>Shah, Sameer B</au><au>Robinson, John T</au><au>Hays, Thomas S</au><au>Danuser, Gaudenz</au><au>Goldstein, Lawrence S B</au><au>Zheng, Yixian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2012-05</date><risdate>2012</risdate><volume>23</volume><issue>9</issue><spage>1700</spage><epage>1714</epage><pages>1700-1714</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmental nerve axons. Computational analyses of a large number of moving vesicles in defined genetic backgrounds with partial reduction or overexpression of motor proteins enabled us to test with high precision existing and new models of motor activity and coordination in vivo. We discovered several previously unknown features of vesicle movement, including a surprising dependence of anterograde APP vesicle movement velocity on the amount of kinesin-1. This finding is largely incompatible with the biophysical properties of kinesin-1 derived from in vitro analyses. Our data also suggest kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and their direction and velocity are controlled at least in part by dynein intermediate chain.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>22398725</pmid><doi>10.1091/mbc.E11-11-0938</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2012-05, Vol.23 (9), p.1700-1714 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3338437 |
source | NCBI_PubMed Central(免费) |
subjects | Alzheimer's disease Amyloid beta-Protein Precursor - metabolism Amyloid precursor protein Animals Axonal transport Axonal Transport - physiology Axons Biological Transport Computational Biology Computational neuroscience Computed tomography Data processing Drosophila Drosophila Proteins - genetics Drosophila Proteins - metabolism Dynactin Complex Dynein Dyneins - genetics Dyneins - metabolism Kinesin Kinesin - genetics Kinesin - metabolism Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Microtubules Motor activity Motor Activity - physiology Nerves Transport Vesicles - metabolism Vesicles |
title | Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20motor%20function%20in%20axonal%20transport%20in%20vivo%20probed%20by%20genetic%20and%20computational%20analysis%20in%20Drosophila&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Reis,%20Gerald%20F&rft.date=2012-05&rft.volume=23&rft.issue=9&rft.spage=1700&rft.epage=1714&rft.pages=1700-1714&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E11-11-0938&rft_dat=%3Cproquest_pubme%3E1028022235%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019614918&rft_id=info:pmid/22398725&rfr_iscdi=true |