Loading…

Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila

Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmen...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology of the cell 2012-05, Vol.23 (9), p.1700-1714
Main Authors: Reis, Gerald F, Yang, Ge, Szpankowski, Lukasz, Weaver, Carole, Shah, Sameer B, Robinson, John T, Hays, Thomas S, Danuser, Gaudenz, Goldstein, Lawrence S B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3
cites cdi_FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3
container_end_page 1714
container_issue 9
container_start_page 1700
container_title Molecular biology of the cell
container_volume 23
creator Reis, Gerald F
Yang, Ge
Szpankowski, Lukasz
Weaver, Carole
Shah, Sameer B
Robinson, John T
Hays, Thomas S
Danuser, Gaudenz
Goldstein, Lawrence S B
description Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmental nerve axons. Computational analyses of a large number of moving vesicles in defined genetic backgrounds with partial reduction or overexpression of motor proteins enabled us to test with high precision existing and new models of motor activity and coordination in vivo. We discovered several previously unknown features of vesicle movement, including a surprising dependence of anterograde APP vesicle movement velocity on the amount of kinesin-1. This finding is largely incompatible with the biophysical properties of kinesin-1 derived from in vitro analyses. Our data also suggest kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and their direction and velocity are controlled at least in part by dynein intermediate chain.
doi_str_mv 10.1091/mbc.E11-11-0938
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3338437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1028022235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3</originalsourceid><addsrcrecordid>eNqNUUtv1jAQtBCIlsKZG_KRS1qvnYd9QUJteUhFXOBsbZxNa5TYwU4-8f17HLVUcENa2St7ZrSzw9hrEOcgDFzMvTu_BqhKCaP0E3YKRpmqbnT7tPSiMRU0sj5hL3L-IQTUdds9ZydSKqM72Zyy-CVO5LYJE5_jGhMft-BWHwP3geOvGHDia8KQl5jW_e3gD5EvKfY08P7IbynQ6h3HMHAX52VbcWcXFpbjmH3eSVcp5rjc-QlfsmcjTplePdxn7PuH62-Xn6qbrx8_X76_qZzSzVqh6ztEMdKoR1A0irZpWy2NBCNljc64HlqtEHoiVWMNw4BCYq86TZ1oSZ2xd_e6y9bPNDgKxcVkl-RnTEcb0dt_f4K_s7fxYJVSulZdEXj7IJDiz43yamefHU0TBopbtiCkFrIssvkPKJgWagO6QC_uoa5sJCcaHycCYfdEbUnUEoAttSdaGG_-NvKI_xOh-g0WsqA9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019614918</pqid></control><display><type>article</type><title>Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila</title><source>NCBI_PubMed Central(免费)</source><creator>Reis, Gerald F ; Yang, Ge ; Szpankowski, Lukasz ; Weaver, Carole ; Shah, Sameer B ; Robinson, John T ; Hays, Thomas S ; Danuser, Gaudenz ; Goldstein, Lawrence S B</creator><contributor>Zheng, Yixian</contributor><creatorcontrib>Reis, Gerald F ; Yang, Ge ; Szpankowski, Lukasz ; Weaver, Carole ; Shah, Sameer B ; Robinson, John T ; Hays, Thomas S ; Danuser, Gaudenz ; Goldstein, Lawrence S B ; Zheng, Yixian</creatorcontrib><description>Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmental nerve axons. Computational analyses of a large number of moving vesicles in defined genetic backgrounds with partial reduction or overexpression of motor proteins enabled us to test with high precision existing and new models of motor activity and coordination in vivo. We discovered several previously unknown features of vesicle movement, including a surprising dependence of anterograde APP vesicle movement velocity on the amount of kinesin-1. This finding is largely incompatible with the biophysical properties of kinesin-1 derived from in vitro analyses. Our data also suggest kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and their direction and velocity are controlled at least in part by dynein intermediate chain.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E11-11-0938</identifier><identifier>PMID: 22398725</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Alzheimer's disease ; Amyloid beta-Protein Precursor - metabolism ; Amyloid precursor protein ; Animals ; Axonal transport ; Axonal Transport - physiology ; Axons ; Biological Transport ; Computational Biology ; Computational neuroscience ; Computed tomography ; Data processing ; Drosophila ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Dynactin Complex ; Dynein ; Dyneins - genetics ; Dyneins - metabolism ; Kinesin ; Kinesin - genetics ; Kinesin - metabolism ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Microtubules ; Motor activity ; Motor Activity - physiology ; Nerves ; Transport Vesicles - metabolism ; Vesicles</subject><ispartof>Molecular biology of the cell, 2012-05, Vol.23 (9), p.1700-1714</ispartof><rights>2012 Reis This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3</citedby><cites>FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338437/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338437/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22398725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zheng, Yixian</contributor><creatorcontrib>Reis, Gerald F</creatorcontrib><creatorcontrib>Yang, Ge</creatorcontrib><creatorcontrib>Szpankowski, Lukasz</creatorcontrib><creatorcontrib>Weaver, Carole</creatorcontrib><creatorcontrib>Shah, Sameer B</creatorcontrib><creatorcontrib>Robinson, John T</creatorcontrib><creatorcontrib>Hays, Thomas S</creatorcontrib><creatorcontrib>Danuser, Gaudenz</creatorcontrib><creatorcontrib>Goldstein, Lawrence S B</creatorcontrib><title>Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmental nerve axons. Computational analyses of a large number of moving vesicles in defined genetic backgrounds with partial reduction or overexpression of motor proteins enabled us to test with high precision existing and new models of motor activity and coordination in vivo. We discovered several previously unknown features of vesicle movement, including a surprising dependence of anterograde APP vesicle movement velocity on the amount of kinesin-1. This finding is largely incompatible with the biophysical properties of kinesin-1 derived from in vitro analyses. Our data also suggest kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and their direction and velocity are controlled at least in part by dynein intermediate chain.</description><subject>Alzheimer's disease</subject><subject>Amyloid beta-Protein Precursor - metabolism</subject><subject>Amyloid precursor protein</subject><subject>Animals</subject><subject>Axonal transport</subject><subject>Axonal Transport - physiology</subject><subject>Axons</subject><subject>Biological Transport</subject><subject>Computational Biology</subject><subject>Computational neuroscience</subject><subject>Computed tomography</subject><subject>Data processing</subject><subject>Drosophila</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Dynactin Complex</subject><subject>Dynein</subject><subject>Dyneins - genetics</subject><subject>Dyneins - metabolism</subject><subject>Kinesin</subject><subject>Kinesin - genetics</subject><subject>Kinesin - metabolism</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules</subject><subject>Motor activity</subject><subject>Motor Activity - physiology</subject><subject>Nerves</subject><subject>Transport Vesicles - metabolism</subject><subject>Vesicles</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNUUtv1jAQtBCIlsKZG_KRS1qvnYd9QUJteUhFXOBsbZxNa5TYwU4-8f17HLVUcENa2St7ZrSzw9hrEOcgDFzMvTu_BqhKCaP0E3YKRpmqbnT7tPSiMRU0sj5hL3L-IQTUdds9ZydSKqM72Zyy-CVO5LYJE5_jGhMft-BWHwP3geOvGHDia8KQl5jW_e3gD5EvKfY08P7IbynQ6h3HMHAX52VbcWcXFpbjmH3eSVcp5rjc-QlfsmcjTplePdxn7PuH62-Xn6qbrx8_X76_qZzSzVqh6ztEMdKoR1A0irZpWy2NBCNljc64HlqtEHoiVWMNw4BCYq86TZ1oSZ2xd_e6y9bPNDgKxcVkl-RnTEcb0dt_f4K_s7fxYJVSulZdEXj7IJDiz43yamefHU0TBopbtiCkFrIssvkPKJgWagO6QC_uoa5sJCcaHycCYfdEbUnUEoAttSdaGG_-NvKI_xOh-g0WsqA9</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Reis, Gerald F</creator><creator>Yang, Ge</creator><creator>Szpankowski, Lukasz</creator><creator>Weaver, Carole</creator><creator>Shah, Sameer B</creator><creator>Robinson, John T</creator><creator>Hays, Thomas S</creator><creator>Danuser, Gaudenz</creator><creator>Goldstein, Lawrence S B</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201205</creationdate><title>Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila</title><author>Reis, Gerald F ; Yang, Ge ; Szpankowski, Lukasz ; Weaver, Carole ; Shah, Sameer B ; Robinson, John T ; Hays, Thomas S ; Danuser, Gaudenz ; Goldstein, Lawrence S B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alzheimer's disease</topic><topic>Amyloid beta-Protein Precursor - metabolism</topic><topic>Amyloid precursor protein</topic><topic>Animals</topic><topic>Axonal transport</topic><topic>Axonal Transport - physiology</topic><topic>Axons</topic><topic>Biological Transport</topic><topic>Computational Biology</topic><topic>Computational neuroscience</topic><topic>Computed tomography</topic><topic>Data processing</topic><topic>Drosophila</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Dynactin Complex</topic><topic>Dynein</topic><topic>Dyneins - genetics</topic><topic>Dyneins - metabolism</topic><topic>Kinesin</topic><topic>Kinesin - genetics</topic><topic>Kinesin - metabolism</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules</topic><topic>Motor activity</topic><topic>Motor Activity - physiology</topic><topic>Nerves</topic><topic>Transport Vesicles - metabolism</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reis, Gerald F</creatorcontrib><creatorcontrib>Yang, Ge</creatorcontrib><creatorcontrib>Szpankowski, Lukasz</creatorcontrib><creatorcontrib>Weaver, Carole</creatorcontrib><creatorcontrib>Shah, Sameer B</creatorcontrib><creatorcontrib>Robinson, John T</creatorcontrib><creatorcontrib>Hays, Thomas S</creatorcontrib><creatorcontrib>Danuser, Gaudenz</creatorcontrib><creatorcontrib>Goldstein, Lawrence S B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reis, Gerald F</au><au>Yang, Ge</au><au>Szpankowski, Lukasz</au><au>Weaver, Carole</au><au>Shah, Sameer B</au><au>Robinson, John T</au><au>Hays, Thomas S</au><au>Danuser, Gaudenz</au><au>Goldstein, Lawrence S B</au><au>Zheng, Yixian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2012-05</date><risdate>2012</risdate><volume>23</volume><issue>9</issue><spage>1700</spage><epage>1714</epage><pages>1700-1714</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmental nerve axons. Computational analyses of a large number of moving vesicles in defined genetic backgrounds with partial reduction or overexpression of motor proteins enabled us to test with high precision existing and new models of motor activity and coordination in vivo. We discovered several previously unknown features of vesicle movement, including a surprising dependence of anterograde APP vesicle movement velocity on the amount of kinesin-1. This finding is largely incompatible with the biophysical properties of kinesin-1 derived from in vitro analyses. Our data also suggest kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and their direction and velocity are controlled at least in part by dynein intermediate chain.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>22398725</pmid><doi>10.1091/mbc.E11-11-0938</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2012-05, Vol.23 (9), p.1700-1714
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3338437
source NCBI_PubMed Central(免费)
subjects Alzheimer's disease
Amyloid beta-Protein Precursor - metabolism
Amyloid precursor protein
Animals
Axonal transport
Axonal Transport - physiology
Axons
Biological Transport
Computational Biology
Computational neuroscience
Computed tomography
Data processing
Drosophila
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Dynactin Complex
Dynein
Dyneins - genetics
Dyneins - metabolism
Kinesin
Kinesin - genetics
Kinesin - metabolism
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Microtubules
Motor activity
Motor Activity - physiology
Nerves
Transport Vesicles - metabolism
Vesicles
title Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20motor%20function%20in%20axonal%20transport%20in%20vivo%20probed%20by%20genetic%20and%20computational%20analysis%20in%20Drosophila&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Reis,%20Gerald%20F&rft.date=2012-05&rft.volume=23&rft.issue=9&rft.spage=1700&rft.epage=1714&rft.pages=1700-1714&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E11-11-0938&rft_dat=%3Cproquest_pubme%3E1028022235%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-acb7aa0fef8f13ef06566829219224ac9cb1683a1bee34a41dda02ab378e706e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019614918&rft_id=info:pmid/22398725&rfr_iscdi=true