Loading…

Identification of Ubiquitin-specific Protease 9X (USP9X) as a Deubiquitinase Acting on Ubiquitin-Peroxin 5 (PEX5) Thioester Conjugate

Peroxin 5 (PEX5), the peroxisomal protein shuttling receptor, binds newly synthesized peroxisomal matrix proteins in the cytosol and promotes their translocation across the organelle membrane. During the translocation step, PEX5 itself becomes inserted into the peroxisomal docking/translocation mach...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2012-04, Vol.287 (16), p.12815-12827
Main Authors: Grou, Cláudia P., Francisco, Tânia, Rodrigues, Tony A., Freitas, Marta O., Pinto, Manuel P., Carvalho, Andreia F., Domingues, Pedro, Wood, Stephen A., Rodríguez-Borges, José E., Sá-Miranda, Clara, Fransen, Marc, Azevedo, Jorge E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peroxin 5 (PEX5), the peroxisomal protein shuttling receptor, binds newly synthesized peroxisomal matrix proteins in the cytosol and promotes their translocation across the organelle membrane. During the translocation step, PEX5 itself becomes inserted into the peroxisomal docking/translocation machinery. PEX5 is then monoubiquitinated at a conserved cysteine residue and extracted back into the cytosol in an ATP-dependent manner. We have previously shown that the ubiquitin-PEX5 thioester conjugate (Ub-PEX5) released into the cytosol can be efficiently disrupted by physiological concentrations of glutathione, raising the possibility that a fraction of Ub-PEX5 is nonenzymatically deubiquitinated in vivo. However, data suggesting that Ub-PEX5 is also a target of a deubiquitinase were also obtained in that work. Here, we used an unbiased biochemical approach to identify this enzyme. Our results suggest that ubiquitin-specific protease 9X (USP9X) is by far the most active deubiquitinase acting on Ub-PEX5, both in female rat liver and HeLa cells. We also show that USP9X is an elongated monomeric protein with the capacity to hydrolyze thioester, isopeptide, and peptide bonds. The strategy described here will be useful in identifying deubiquitinases acting on other ubiquitin conjugates. Background: The mammalian deubiquitinase that hydrolyzes the ubiquitin-PEX5 thioester conjugate was unknown. Results: USP9X was found to be the most active deubiquitinase acting on ubiquitin-PEX5. Conclusion: We propose that USP9X participates in the PEX5-mediated peroxisomal protein import pathway. Significance: The unbiased biochemical strategy described here will be useful to identify deubiquitinases acting on other substrates.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M112.340158