Loading…

Structural and Functional Studies of trans-Encoded HLA-DQ2.3 (DQA103:01/DQB102:01) Protein Molecule

MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, tran...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2012-04, Vol.287 (17), p.13611-13619
Main Authors: Tollefsen, Stig, Hotta, Kinya, Chen, Xi, Simonsen, Bjørg, Swaminathan, Kunchithapadam, Mathews, Irimpan I., Sollid, Ludvig M., Kim, Chu-Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623
cites cdi_FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623
container_end_page 13619
container_issue 17
container_start_page 13611
container_title The Journal of biological chemistry
container_volume 287
creator Tollefsen, Stig
Hotta, Kinya
Chen, Xi
Simonsen, Bjørg
Swaminathan, Kunchithapadam
Mathews, Irimpan I.
Sollid, Ludvig M.
Kim, Chu-Young
description MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, trans-encoded class II MHC molecules, where the α- and β-chain are encoded on opposite chromosomes, can also be expressed. We have studied the trans-encoded class II HLA molecule DQ2.3 (DQA1*03:01/DQB1*02:01) that has received particular attention as it may explain the increased risk of certain individuals to type 1 diabetes. We report the x-ray crystal structure of this HLA molecule complexed with a gluten epitope at 3.05 Å resolution. The gluten epitope, which is the only known HLA-DQ2.3-restricted epitope, is preferentially recognized in the context of the DQ2.3 molecule by T-cell clones of a DQ8/DQ2.5 heterozygous celiac disease patient. This preferential recognition can be explained by improved HLA binding as the epitope combines the peptide-binding motif of DQ2.5 (negative charge at P4) and DQ8 (negative charge at P1). The analysis of the structure of DQ2.3 together with all other available DQ crystal structures and sequences led us to categorize DQA1 and DQB1 genes into two groups where any α-chain and β-chain belonging to the same group are expected to form a stable heterodimer. Background:trans-Encoded HLA-DQ molecules are biologically interesting, but no structures of such molecules exist. Results: X-ray crystal structure of the trans-encoded DQ2.3 (DQA1*03:01/DQB1*02:01) was determined. Structural data are presented together with functional T-cell data. Conclusion: DQ2.3 has preference for negative charged anchors at P1 and P4. Significance: This work helps to understand why DQ2.3 is associated with a particular risk for type 1 diabetes.
doi_str_mv 10.1074/jbc.M111.320374
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3340161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820529347</els_id><sourcerecordid>1009128247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhi0EakPpmRvaYzlsMmPvJwek0LQUKRWNWiRulmOPwdXGbu3dSvx7XKVUcMCXsTWPX4_8MPYWYY7QVovbrZ5fIuJccBBt9YLNEDpRihq_v2QzAI5lz-vukL1O6Rbyqno8YIeci4a3Dc6Yvh7jpMcpqqFQ3hTnk9ejCz4fr8fJOEpFsMUYlU_lmdfBkCku1styteFzUZysNksE8QFwsdp8QuB59764imEk54vLMJCeBnrDXlk1JDp-qkfs2_nZzelFuf76-cvpcl3qGvqxRN4bbhGbVqjedAJ03bZolN2issZAZ5GsMnXdcFsbDl1nG95XVadRUNtwccQ-7nPvpu2OjCaf5x7kXXQ7FX_JoJz8t-PdT_kjPEghKsAGc8DJU0AM9xOlUe5c0jQMylOYkkSAHnnHqzajiz2qY0gpkn1-BkE-qpFZjXxUI_dq8o13f0_3zP9xkYF-D1D-owdHUSbtyGsyLpIepQnuv-G_AalxmnU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009128247</pqid></control><display><type>article</type><title>Structural and Functional Studies of trans-Encoded HLA-DQ2.3 (DQA103:01/DQB102:01) Protein Molecule</title><source>ScienceDirect</source><source>PubMed Central(OpenAccess)</source><creator>Tollefsen, Stig ; Hotta, Kinya ; Chen, Xi ; Simonsen, Bjørg ; Swaminathan, Kunchithapadam ; Mathews, Irimpan I. ; Sollid, Ludvig M. ; Kim, Chu-Young</creator><creatorcontrib>Tollefsen, Stig ; Hotta, Kinya ; Chen, Xi ; Simonsen, Bjørg ; Swaminathan, Kunchithapadam ; Mathews, Irimpan I. ; Sollid, Ludvig M. ; Kim, Chu-Young</creatorcontrib><description>MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, trans-encoded class II MHC molecules, where the α- and β-chain are encoded on opposite chromosomes, can also be expressed. We have studied the trans-encoded class II HLA molecule DQ2.3 (DQA1*03:01/DQB1*02:01) that has received particular attention as it may explain the increased risk of certain individuals to type 1 diabetes. We report the x-ray crystal structure of this HLA molecule complexed with a gluten epitope at 3.05 Å resolution. The gluten epitope, which is the only known HLA-DQ2.3-restricted epitope, is preferentially recognized in the context of the DQ2.3 molecule by T-cell clones of a DQ8/DQ2.5 heterozygous celiac disease patient. This preferential recognition can be explained by improved HLA binding as the epitope combines the peptide-binding motif of DQ2.5 (negative charge at P4) and DQ8 (negative charge at P1). The analysis of the structure of DQ2.3 together with all other available DQ crystal structures and sequences led us to categorize DQA1 and DQB1 genes into two groups where any α-chain and β-chain belonging to the same group are expected to form a stable heterodimer. Background:trans-Encoded HLA-DQ molecules are biologically interesting, but no structures of such molecules exist. Results: X-ray crystal structure of the trans-encoded DQ2.3 (DQA1*03:01/DQB1*02:01) was determined. Structural data are presented together with functional T-cell data. Conclusion: DQ2.3 has preference for negative charged anchors at P1 and P4. Significance: This work helps to understand why DQ2.3 is associated with a particular risk for type 1 diabetes.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.320374</identifier><identifier>PMID: 22362761</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Autoimmunity ; Celiac Disease ; Celiac Disease - metabolism ; Cell Proliferation ; Crystallography, X-Ray - methods ; Diabetes ; Diabetes Mellitus, Type 1 - metabolism ; Dimerization ; Epitopes - chemistry ; Gluten ; Glutens - chemistry ; HLA-DQ alpha-Chains - chemistry ; HLA-DQ Antigens - chemistry ; HLA-DQ beta-Chains - chemistry ; Humans ; Immune System ; Immunology ; Major Histocompatibility Complex ; Major Histocompatibility Complex (MHC) ; Molecular Conformation ; Peptides - chemistry ; Protein Conformation ; T-Lymphocytes - immunology ; T-Lymphocytes - metabolism ; Type 1 Diabetes ; X-ray Crystallography</subject><ispartof>The Journal of biological chemistry, 2012-04, Vol.287 (17), p.13611-13619</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623</citedby><cites>FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340161/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820529347$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22362761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tollefsen, Stig</creatorcontrib><creatorcontrib>Hotta, Kinya</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Simonsen, Bjørg</creatorcontrib><creatorcontrib>Swaminathan, Kunchithapadam</creatorcontrib><creatorcontrib>Mathews, Irimpan I.</creatorcontrib><creatorcontrib>Sollid, Ludvig M.</creatorcontrib><creatorcontrib>Kim, Chu-Young</creatorcontrib><title>Structural and Functional Studies of trans-Encoded HLA-DQ2.3 (DQA103:01/DQB102:01) Protein Molecule</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, trans-encoded class II MHC molecules, where the α- and β-chain are encoded on opposite chromosomes, can also be expressed. We have studied the trans-encoded class II HLA molecule DQ2.3 (DQA1*03:01/DQB1*02:01) that has received particular attention as it may explain the increased risk of certain individuals to type 1 diabetes. We report the x-ray crystal structure of this HLA molecule complexed with a gluten epitope at 3.05 Å resolution. The gluten epitope, which is the only known HLA-DQ2.3-restricted epitope, is preferentially recognized in the context of the DQ2.3 molecule by T-cell clones of a DQ8/DQ2.5 heterozygous celiac disease patient. This preferential recognition can be explained by improved HLA binding as the epitope combines the peptide-binding motif of DQ2.5 (negative charge at P4) and DQ8 (negative charge at P1). The analysis of the structure of DQ2.3 together with all other available DQ crystal structures and sequences led us to categorize DQA1 and DQB1 genes into two groups where any α-chain and β-chain belonging to the same group are expected to form a stable heterodimer. Background:trans-Encoded HLA-DQ molecules are biologically interesting, but no structures of such molecules exist. Results: X-ray crystal structure of the trans-encoded DQ2.3 (DQA1*03:01/DQB1*02:01) was determined. Structural data are presented together with functional T-cell data. Conclusion: DQ2.3 has preference for negative charged anchors at P1 and P4. Significance: This work helps to understand why DQ2.3 is associated with a particular risk for type 1 diabetes.</description><subject>Autoimmunity</subject><subject>Celiac Disease</subject><subject>Celiac Disease - metabolism</subject><subject>Cell Proliferation</subject><subject>Crystallography, X-Ray - methods</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 1 - metabolism</subject><subject>Dimerization</subject><subject>Epitopes - chemistry</subject><subject>Gluten</subject><subject>Glutens - chemistry</subject><subject>HLA-DQ alpha-Chains - chemistry</subject><subject>HLA-DQ Antigens - chemistry</subject><subject>HLA-DQ beta-Chains - chemistry</subject><subject>Humans</subject><subject>Immune System</subject><subject>Immunology</subject><subject>Major Histocompatibility Complex</subject><subject>Major Histocompatibility Complex (MHC)</subject><subject>Molecular Conformation</subject><subject>Peptides - chemistry</subject><subject>Protein Conformation</subject><subject>T-Lymphocytes - immunology</subject><subject>T-Lymphocytes - metabolism</subject><subject>Type 1 Diabetes</subject><subject>X-ray Crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kU1vEzEQhi0EakPpmRvaYzlsMmPvJwek0LQUKRWNWiRulmOPwdXGbu3dSvx7XKVUcMCXsTWPX4_8MPYWYY7QVovbrZ5fIuJccBBt9YLNEDpRihq_v2QzAI5lz-vukL1O6Rbyqno8YIeci4a3Dc6Yvh7jpMcpqqFQ3hTnk9ejCz4fr8fJOEpFsMUYlU_lmdfBkCku1styteFzUZysNksE8QFwsdp8QuB59764imEk54vLMJCeBnrDXlk1JDp-qkfs2_nZzelFuf76-cvpcl3qGvqxRN4bbhGbVqjedAJ03bZolN2issZAZ5GsMnXdcFsbDl1nG95XVadRUNtwccQ-7nPvpu2OjCaf5x7kXXQ7FX_JoJz8t-PdT_kjPEghKsAGc8DJU0AM9xOlUe5c0jQMylOYkkSAHnnHqzajiz2qY0gpkn1-BkE-qpFZjXxUI_dq8o13f0_3zP9xkYF-D1D-owdHUSbtyGsyLpIepQnuv-G_AalxmnU</recordid><startdate>20120420</startdate><enddate>20120420</enddate><creator>Tollefsen, Stig</creator><creator>Hotta, Kinya</creator><creator>Chen, Xi</creator><creator>Simonsen, Bjørg</creator><creator>Swaminathan, Kunchithapadam</creator><creator>Mathews, Irimpan I.</creator><creator>Sollid, Ludvig M.</creator><creator>Kim, Chu-Young</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120420</creationdate><title>Structural and Functional Studies of trans-Encoded HLA-DQ2.3 (DQA103:01/DQB102:01) Protein Molecule</title><author>Tollefsen, Stig ; Hotta, Kinya ; Chen, Xi ; Simonsen, Bjørg ; Swaminathan, Kunchithapadam ; Mathews, Irimpan I. ; Sollid, Ludvig M. ; Kim, Chu-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Autoimmunity</topic><topic>Celiac Disease</topic><topic>Celiac Disease - metabolism</topic><topic>Cell Proliferation</topic><topic>Crystallography, X-Ray - methods</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 1 - metabolism</topic><topic>Dimerization</topic><topic>Epitopes - chemistry</topic><topic>Gluten</topic><topic>Glutens - chemistry</topic><topic>HLA-DQ alpha-Chains - chemistry</topic><topic>HLA-DQ Antigens - chemistry</topic><topic>HLA-DQ beta-Chains - chemistry</topic><topic>Humans</topic><topic>Immune System</topic><topic>Immunology</topic><topic>Major Histocompatibility Complex</topic><topic>Major Histocompatibility Complex (MHC)</topic><topic>Molecular Conformation</topic><topic>Peptides - chemistry</topic><topic>Protein Conformation</topic><topic>T-Lymphocytes - immunology</topic><topic>T-Lymphocytes - metabolism</topic><topic>Type 1 Diabetes</topic><topic>X-ray Crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tollefsen, Stig</creatorcontrib><creatorcontrib>Hotta, Kinya</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Simonsen, Bjørg</creatorcontrib><creatorcontrib>Swaminathan, Kunchithapadam</creatorcontrib><creatorcontrib>Mathews, Irimpan I.</creatorcontrib><creatorcontrib>Sollid, Ludvig M.</creatorcontrib><creatorcontrib>Kim, Chu-Young</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tollefsen, Stig</au><au>Hotta, Kinya</au><au>Chen, Xi</au><au>Simonsen, Bjørg</au><au>Swaminathan, Kunchithapadam</au><au>Mathews, Irimpan I.</au><au>Sollid, Ludvig M.</au><au>Kim, Chu-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Functional Studies of trans-Encoded HLA-DQ2.3 (DQA103:01/DQB102:01) Protein Molecule</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-04-20</date><risdate>2012</risdate><volume>287</volume><issue>17</issue><spage>13611</spage><epage>13619</epage><pages>13611-13619</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, trans-encoded class II MHC molecules, where the α- and β-chain are encoded on opposite chromosomes, can also be expressed. We have studied the trans-encoded class II HLA molecule DQ2.3 (DQA1*03:01/DQB1*02:01) that has received particular attention as it may explain the increased risk of certain individuals to type 1 diabetes. We report the x-ray crystal structure of this HLA molecule complexed with a gluten epitope at 3.05 Å resolution. The gluten epitope, which is the only known HLA-DQ2.3-restricted epitope, is preferentially recognized in the context of the DQ2.3 molecule by T-cell clones of a DQ8/DQ2.5 heterozygous celiac disease patient. This preferential recognition can be explained by improved HLA binding as the epitope combines the peptide-binding motif of DQ2.5 (negative charge at P4) and DQ8 (negative charge at P1). The analysis of the structure of DQ2.3 together with all other available DQ crystal structures and sequences led us to categorize DQA1 and DQB1 genes into two groups where any α-chain and β-chain belonging to the same group are expected to form a stable heterodimer. Background:trans-Encoded HLA-DQ molecules are biologically interesting, but no structures of such molecules exist. Results: X-ray crystal structure of the trans-encoded DQ2.3 (DQA1*03:01/DQB1*02:01) was determined. Structural data are presented together with functional T-cell data. Conclusion: DQ2.3 has preference for negative charged anchors at P1 and P4. Significance: This work helps to understand why DQ2.3 is associated with a particular risk for type 1 diabetes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22362761</pmid><doi>10.1074/jbc.M111.320374</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2012-04, Vol.287 (17), p.13611-13619
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3340161
source ScienceDirect; PubMed Central(OpenAccess)
subjects Autoimmunity
Celiac Disease
Celiac Disease - metabolism
Cell Proliferation
Crystallography, X-Ray - methods
Diabetes
Diabetes Mellitus, Type 1 - metabolism
Dimerization
Epitopes - chemistry
Gluten
Glutens - chemistry
HLA-DQ alpha-Chains - chemistry
HLA-DQ Antigens - chemistry
HLA-DQ beta-Chains - chemistry
Humans
Immune System
Immunology
Major Histocompatibility Complex
Major Histocompatibility Complex (MHC)
Molecular Conformation
Peptides - chemistry
Protein Conformation
T-Lymphocytes - immunology
T-Lymphocytes - metabolism
Type 1 Diabetes
X-ray Crystallography
title Structural and Functional Studies of trans-Encoded HLA-DQ2.3 (DQA103:01/DQB102:01) Protein Molecule
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Functional%20Studies%20of%20trans-Encoded%20HLA-DQ2.3%20(DQA103:01/DQB102:01)%20Protein%20Molecule&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Tollefsen,%20Stig&rft.date=2012-04-20&rft.volume=287&rft.issue=17&rft.spage=13611&rft.epage=13619&rft.pages=13611-13619&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.320374&rft_dat=%3Cproquest_pubme%3E1009128247%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1009128247&rft_id=info:pmid/22362761&rfr_iscdi=true