Loading…
Structural and Functional Studies of trans-Encoded HLA-DQ2.3 (DQA103:01/DQB102:01) Protein Molecule
MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, tran...
Saved in:
Published in: | The Journal of biological chemistry 2012-04, Vol.287 (17), p.13611-13619 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623 |
container_end_page | 13619 |
container_issue | 17 |
container_start_page | 13611 |
container_title | The Journal of biological chemistry |
container_volume | 287 |
creator | Tollefsen, Stig Hotta, Kinya Chen, Xi Simonsen, Bjørg Swaminathan, Kunchithapadam Mathews, Irimpan I. Sollid, Ludvig M. Kim, Chu-Young |
description | MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, trans-encoded class II MHC molecules, where the α- and β-chain are encoded on opposite chromosomes, can also be expressed. We have studied the trans-encoded class II HLA molecule DQ2.3 (DQA1*03:01/DQB1*02:01) that has received particular attention as it may explain the increased risk of certain individuals to type 1 diabetes. We report the x-ray crystal structure of this HLA molecule complexed with a gluten epitope at 3.05 Å resolution. The gluten epitope, which is the only known HLA-DQ2.3-restricted epitope, is preferentially recognized in the context of the DQ2.3 molecule by T-cell clones of a DQ8/DQ2.5 heterozygous celiac disease patient. This preferential recognition can be explained by improved HLA binding as the epitope combines the peptide-binding motif of DQ2.5 (negative charge at P4) and DQ8 (negative charge at P1). The analysis of the structure of DQ2.3 together with all other available DQ crystal structures and sequences led us to categorize DQA1 and DQB1 genes into two groups where any α-chain and β-chain belonging to the same group are expected to form a stable heterodimer.
Background:trans-Encoded HLA-DQ molecules are biologically interesting, but no structures of such molecules exist.
Results: X-ray crystal structure of the trans-encoded DQ2.3 (DQA1*03:01/DQB1*02:01) was determined. Structural data are presented together with functional T-cell data.
Conclusion: DQ2.3 has preference for negative charged anchors at P1 and P4.
Significance: This work helps to understand why DQ2.3 is associated with a particular risk for type 1 diabetes. |
doi_str_mv | 10.1074/jbc.M111.320374 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3340161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820529347</els_id><sourcerecordid>1009128247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhi0EakPpmRvaYzlsMmPvJwek0LQUKRWNWiRulmOPwdXGbu3dSvx7XKVUcMCXsTWPX4_8MPYWYY7QVovbrZ5fIuJccBBt9YLNEDpRihq_v2QzAI5lz-vukL1O6Rbyqno8YIeci4a3Dc6Yvh7jpMcpqqFQ3hTnk9ejCz4fr8fJOEpFsMUYlU_lmdfBkCku1styteFzUZysNksE8QFwsdp8QuB59764imEk54vLMJCeBnrDXlk1JDp-qkfs2_nZzelFuf76-cvpcl3qGvqxRN4bbhGbVqjedAJ03bZolN2issZAZ5GsMnXdcFsbDl1nG95XVadRUNtwccQ-7nPvpu2OjCaf5x7kXXQ7FX_JoJz8t-PdT_kjPEghKsAGc8DJU0AM9xOlUe5c0jQMylOYkkSAHnnHqzajiz2qY0gpkn1-BkE-qpFZjXxUI_dq8o13f0_3zP9xkYF-D1D-owdHUSbtyGsyLpIepQnuv-G_AalxmnU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009128247</pqid></control><display><type>article</type><title>Structural and Functional Studies of trans-Encoded HLA-DQ2.3 (DQA103:01/DQB102:01) Protein Molecule</title><source>ScienceDirect</source><source>PubMed Central(OpenAccess)</source><creator>Tollefsen, Stig ; Hotta, Kinya ; Chen, Xi ; Simonsen, Bjørg ; Swaminathan, Kunchithapadam ; Mathews, Irimpan I. ; Sollid, Ludvig M. ; Kim, Chu-Young</creator><creatorcontrib>Tollefsen, Stig ; Hotta, Kinya ; Chen, Xi ; Simonsen, Bjørg ; Swaminathan, Kunchithapadam ; Mathews, Irimpan I. ; Sollid, Ludvig M. ; Kim, Chu-Young</creatorcontrib><description>MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, trans-encoded class II MHC molecules, where the α- and β-chain are encoded on opposite chromosomes, can also be expressed. We have studied the trans-encoded class II HLA molecule DQ2.3 (DQA1*03:01/DQB1*02:01) that has received particular attention as it may explain the increased risk of certain individuals to type 1 diabetes. We report the x-ray crystal structure of this HLA molecule complexed with a gluten epitope at 3.05 Å resolution. The gluten epitope, which is the only known HLA-DQ2.3-restricted epitope, is preferentially recognized in the context of the DQ2.3 molecule by T-cell clones of a DQ8/DQ2.5 heterozygous celiac disease patient. This preferential recognition can be explained by improved HLA binding as the epitope combines the peptide-binding motif of DQ2.5 (negative charge at P4) and DQ8 (negative charge at P1). The analysis of the structure of DQ2.3 together with all other available DQ crystal structures and sequences led us to categorize DQA1 and DQB1 genes into two groups where any α-chain and β-chain belonging to the same group are expected to form a stable heterodimer.
Background:trans-Encoded HLA-DQ molecules are biologically interesting, but no structures of such molecules exist.
Results: X-ray crystal structure of the trans-encoded DQ2.3 (DQA1*03:01/DQB1*02:01) was determined. Structural data are presented together with functional T-cell data.
Conclusion: DQ2.3 has preference for negative charged anchors at P1 and P4.
Significance: This work helps to understand why DQ2.3 is associated with a particular risk for type 1 diabetes.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.320374</identifier><identifier>PMID: 22362761</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Autoimmunity ; Celiac Disease ; Celiac Disease - metabolism ; Cell Proliferation ; Crystallography, X-Ray - methods ; Diabetes ; Diabetes Mellitus, Type 1 - metabolism ; Dimerization ; Epitopes - chemistry ; Gluten ; Glutens - chemistry ; HLA-DQ alpha-Chains - chemistry ; HLA-DQ Antigens - chemistry ; HLA-DQ beta-Chains - chemistry ; Humans ; Immune System ; Immunology ; Major Histocompatibility Complex ; Major Histocompatibility Complex (MHC) ; Molecular Conformation ; Peptides - chemistry ; Protein Conformation ; T-Lymphocytes - immunology ; T-Lymphocytes - metabolism ; Type 1 Diabetes ; X-ray Crystallography</subject><ispartof>The Journal of biological chemistry, 2012-04, Vol.287 (17), p.13611-13619</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623</citedby><cites>FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340161/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820529347$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22362761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tollefsen, Stig</creatorcontrib><creatorcontrib>Hotta, Kinya</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Simonsen, Bjørg</creatorcontrib><creatorcontrib>Swaminathan, Kunchithapadam</creatorcontrib><creatorcontrib>Mathews, Irimpan I.</creatorcontrib><creatorcontrib>Sollid, Ludvig M.</creatorcontrib><creatorcontrib>Kim, Chu-Young</creatorcontrib><title>Structural and Functional Studies of trans-Encoded HLA-DQ2.3 (DQA103:01/DQB102:01) Protein Molecule</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, trans-encoded class II MHC molecules, where the α- and β-chain are encoded on opposite chromosomes, can also be expressed. We have studied the trans-encoded class II HLA molecule DQ2.3 (DQA1*03:01/DQB1*02:01) that has received particular attention as it may explain the increased risk of certain individuals to type 1 diabetes. We report the x-ray crystal structure of this HLA molecule complexed with a gluten epitope at 3.05 Å resolution. The gluten epitope, which is the only known HLA-DQ2.3-restricted epitope, is preferentially recognized in the context of the DQ2.3 molecule by T-cell clones of a DQ8/DQ2.5 heterozygous celiac disease patient. This preferential recognition can be explained by improved HLA binding as the epitope combines the peptide-binding motif of DQ2.5 (negative charge at P4) and DQ8 (negative charge at P1). The analysis of the structure of DQ2.3 together with all other available DQ crystal structures and sequences led us to categorize DQA1 and DQB1 genes into two groups where any α-chain and β-chain belonging to the same group are expected to form a stable heterodimer.
Background:trans-Encoded HLA-DQ molecules are biologically interesting, but no structures of such molecules exist.
Results: X-ray crystal structure of the trans-encoded DQ2.3 (DQA1*03:01/DQB1*02:01) was determined. Structural data are presented together with functional T-cell data.
Conclusion: DQ2.3 has preference for negative charged anchors at P1 and P4.
Significance: This work helps to understand why DQ2.3 is associated with a particular risk for type 1 diabetes.</description><subject>Autoimmunity</subject><subject>Celiac Disease</subject><subject>Celiac Disease - metabolism</subject><subject>Cell Proliferation</subject><subject>Crystallography, X-Ray - methods</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 1 - metabolism</subject><subject>Dimerization</subject><subject>Epitopes - chemistry</subject><subject>Gluten</subject><subject>Glutens - chemistry</subject><subject>HLA-DQ alpha-Chains - chemistry</subject><subject>HLA-DQ Antigens - chemistry</subject><subject>HLA-DQ beta-Chains - chemistry</subject><subject>Humans</subject><subject>Immune System</subject><subject>Immunology</subject><subject>Major Histocompatibility Complex</subject><subject>Major Histocompatibility Complex (MHC)</subject><subject>Molecular Conformation</subject><subject>Peptides - chemistry</subject><subject>Protein Conformation</subject><subject>T-Lymphocytes - immunology</subject><subject>T-Lymphocytes - metabolism</subject><subject>Type 1 Diabetes</subject><subject>X-ray Crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kU1vEzEQhi0EakPpmRvaYzlsMmPvJwek0LQUKRWNWiRulmOPwdXGbu3dSvx7XKVUcMCXsTWPX4_8MPYWYY7QVovbrZ5fIuJccBBt9YLNEDpRihq_v2QzAI5lz-vukL1O6Rbyqno8YIeci4a3Dc6Yvh7jpMcpqqFQ3hTnk9ejCz4fr8fJOEpFsMUYlU_lmdfBkCku1styteFzUZysNksE8QFwsdp8QuB59764imEk54vLMJCeBnrDXlk1JDp-qkfs2_nZzelFuf76-cvpcl3qGvqxRN4bbhGbVqjedAJ03bZolN2issZAZ5GsMnXdcFsbDl1nG95XVadRUNtwccQ-7nPvpu2OjCaf5x7kXXQ7FX_JoJz8t-PdT_kjPEghKsAGc8DJU0AM9xOlUe5c0jQMylOYkkSAHnnHqzajiz2qY0gpkn1-BkE-qpFZjXxUI_dq8o13f0_3zP9xkYF-D1D-owdHUSbtyGsyLpIepQnuv-G_AalxmnU</recordid><startdate>20120420</startdate><enddate>20120420</enddate><creator>Tollefsen, Stig</creator><creator>Hotta, Kinya</creator><creator>Chen, Xi</creator><creator>Simonsen, Bjørg</creator><creator>Swaminathan, Kunchithapadam</creator><creator>Mathews, Irimpan I.</creator><creator>Sollid, Ludvig M.</creator><creator>Kim, Chu-Young</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120420</creationdate><title>Structural and Functional Studies of trans-Encoded HLA-DQ2.3 (DQA103:01/DQB102:01) Protein Molecule</title><author>Tollefsen, Stig ; Hotta, Kinya ; Chen, Xi ; Simonsen, Bjørg ; Swaminathan, Kunchithapadam ; Mathews, Irimpan I. ; Sollid, Ludvig M. ; Kim, Chu-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Autoimmunity</topic><topic>Celiac Disease</topic><topic>Celiac Disease - metabolism</topic><topic>Cell Proliferation</topic><topic>Crystallography, X-Ray - methods</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 1 - metabolism</topic><topic>Dimerization</topic><topic>Epitopes - chemistry</topic><topic>Gluten</topic><topic>Glutens - chemistry</topic><topic>HLA-DQ alpha-Chains - chemistry</topic><topic>HLA-DQ Antigens - chemistry</topic><topic>HLA-DQ beta-Chains - chemistry</topic><topic>Humans</topic><topic>Immune System</topic><topic>Immunology</topic><topic>Major Histocompatibility Complex</topic><topic>Major Histocompatibility Complex (MHC)</topic><topic>Molecular Conformation</topic><topic>Peptides - chemistry</topic><topic>Protein Conformation</topic><topic>T-Lymphocytes - immunology</topic><topic>T-Lymphocytes - metabolism</topic><topic>Type 1 Diabetes</topic><topic>X-ray Crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tollefsen, Stig</creatorcontrib><creatorcontrib>Hotta, Kinya</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Simonsen, Bjørg</creatorcontrib><creatorcontrib>Swaminathan, Kunchithapadam</creatorcontrib><creatorcontrib>Mathews, Irimpan I.</creatorcontrib><creatorcontrib>Sollid, Ludvig M.</creatorcontrib><creatorcontrib>Kim, Chu-Young</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tollefsen, Stig</au><au>Hotta, Kinya</au><au>Chen, Xi</au><au>Simonsen, Bjørg</au><au>Swaminathan, Kunchithapadam</au><au>Mathews, Irimpan I.</au><au>Sollid, Ludvig M.</au><au>Kim, Chu-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Functional Studies of trans-Encoded HLA-DQ2.3 (DQA103:01/DQB102:01) Protein Molecule</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-04-20</date><risdate>2012</risdate><volume>287</volume><issue>17</issue><spage>13611</spage><epage>13619</epage><pages>13611-13619</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, trans-encoded class II MHC molecules, where the α- and β-chain are encoded on opposite chromosomes, can also be expressed. We have studied the trans-encoded class II HLA molecule DQ2.3 (DQA1*03:01/DQB1*02:01) that has received particular attention as it may explain the increased risk of certain individuals to type 1 diabetes. We report the x-ray crystal structure of this HLA molecule complexed with a gluten epitope at 3.05 Å resolution. The gluten epitope, which is the only known HLA-DQ2.3-restricted epitope, is preferentially recognized in the context of the DQ2.3 molecule by T-cell clones of a DQ8/DQ2.5 heterozygous celiac disease patient. This preferential recognition can be explained by improved HLA binding as the epitope combines the peptide-binding motif of DQ2.5 (negative charge at P4) and DQ8 (negative charge at P1). The analysis of the structure of DQ2.3 together with all other available DQ crystal structures and sequences led us to categorize DQA1 and DQB1 genes into two groups where any α-chain and β-chain belonging to the same group are expected to form a stable heterodimer.
Background:trans-Encoded HLA-DQ molecules are biologically interesting, but no structures of such molecules exist.
Results: X-ray crystal structure of the trans-encoded DQ2.3 (DQA1*03:01/DQB1*02:01) was determined. Structural data are presented together with functional T-cell data.
Conclusion: DQ2.3 has preference for negative charged anchors at P1 and P4.
Significance: This work helps to understand why DQ2.3 is associated with a particular risk for type 1 diabetes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22362761</pmid><doi>10.1074/jbc.M111.320374</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2012-04, Vol.287 (17), p.13611-13619 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3340161 |
source | ScienceDirect; PubMed Central(OpenAccess) |
subjects | Autoimmunity Celiac Disease Celiac Disease - metabolism Cell Proliferation Crystallography, X-Ray - methods Diabetes Diabetes Mellitus, Type 1 - metabolism Dimerization Epitopes - chemistry Gluten Glutens - chemistry HLA-DQ alpha-Chains - chemistry HLA-DQ Antigens - chemistry HLA-DQ beta-Chains - chemistry Humans Immune System Immunology Major Histocompatibility Complex Major Histocompatibility Complex (MHC) Molecular Conformation Peptides - chemistry Protein Conformation T-Lymphocytes - immunology T-Lymphocytes - metabolism Type 1 Diabetes X-ray Crystallography |
title | Structural and Functional Studies of trans-Encoded HLA-DQ2.3 (DQA103:01/DQB102:01) Protein Molecule |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Functional%20Studies%20of%20trans-Encoded%20HLA-DQ2.3%20(DQA103:01/DQB102:01)%20Protein%20Molecule&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Tollefsen,%20Stig&rft.date=2012-04-20&rft.volume=287&rft.issue=17&rft.spage=13611&rft.epage=13619&rft.pages=13611-13619&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.320374&rft_dat=%3Cproquest_pubme%3E1009128247%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-129d2f11673a9d830c5771dafb1afdd08f1efad5562f5d2088f629448c13e7623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1009128247&rft_id=info:pmid/22362761&rfr_iscdi=true |