Loading…

Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus

There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2012-05, Vol.287 (21), p.17823-17832
Main Authors: Soares da Costa, Tatiana P., Tieu, William, Yap, Min Y., Pendini, Nicole R., Polyak, Steven W., Sejer Pedersen, Daniel, Morona, Renato, Turnidge, John D., Wallace, John C., Wilce, Matthew C.J., Booker, Grant W., Abell, Andrew D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c489t-f1cabb07ff2c34e647fddf545b4f240c20efbbe92641fe09ef550f579aa7a3e13
cites cdi_FETCH-LOGICAL-c489t-f1cabb07ff2c34e647fddf545b4f240c20efbbe92641fe09ef550f579aa7a3e13
container_end_page 17832
container_issue 21
container_start_page 17823
container_title The Journal of biological chemistry
container_volume 287
creator Soares da Costa, Tatiana P.
Tieu, William
Yap, Min Y.
Pendini, Nicole R.
Polyak, Steven W.
Sejer Pedersen, Daniel
Morona, Renato
Turnidge, John D.
Wallace, John C.
Wilce, Matthew C.J.
Booker, Grant W.
Abell, Andrew D.
description There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (Ki 90 nm) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class. Inhibitors of biotin protein ligase potentially represent a new antibiotic class. Biotin triazoles inhibit the BPL from Staphylococcus aureus but not the human homologue. Our most potent inhibitor shows cytotoxicity against S. aureus but not cultured mammalian cells. This is the first report demonstrating selective inhibition of BPL.
doi_str_mv 10.1074/jbc.M112.356576
format article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3366794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820503037</els_id><sourcerecordid>S0021925820503037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-f1cabb07ff2c34e647fddf545b4f240c20efbbe92641fe09ef550f579aa7a3e13</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK2u3Un-QNp55rERtKgVKgpVcDdMJnfaKWmmzCSF_ntTokUX3s1Z3HPO5X4IXRM8Jjjlk3Whxy-E0DETiUiTEzQkOGMxE-TzFA0xpiTOqcgG6CKENe6G5-QcDSjlLM0YHqLZAirQjd1BZOuVLWxjXR05E91b19g6evOugU7ndqkCRMa7TbRo1Ha1r5x2WrchUq2HNlyiM6OqAFffOkIfjw_v01k8f316nt7NY82zvIkN0aoocGoM1YxDwlNTlkZwUXBDOdYUgykKyGnCiQGcgxECG5HmSqWKAWEjdNv3bttiA6WGuvGqkltvN8rvpVNW_t3UdiWXbicZS5I0513BpC_Q3oXgwRyzBMsDVNlBlQeosofaJW5-nzz6fyh2hrw3QPf4zoKXQVuoNZTWd3Bl6ey_5V-33Ill</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus</title><source>PMC (PubMed Central)</source><source>ScienceDirect Journals</source><creator>Soares da Costa, Tatiana P. ; Tieu, William ; Yap, Min Y. ; Pendini, Nicole R. ; Polyak, Steven W. ; Sejer Pedersen, Daniel ; Morona, Renato ; Turnidge, John D. ; Wallace, John C. ; Wilce, Matthew C.J. ; Booker, Grant W. ; Abell, Andrew D.</creator><creatorcontrib>Soares da Costa, Tatiana P. ; Tieu, William ; Yap, Min Y. ; Pendini, Nicole R. ; Polyak, Steven W. ; Sejer Pedersen, Daniel ; Morona, Renato ; Turnidge, John D. ; Wallace, John C. ; Wilce, Matthew C.J. ; Booker, Grant W. ; Abell, Andrew D.</creatorcontrib><description>There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (Ki 90 nm) with a &gt;1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class. Inhibitors of biotin protein ligase potentially represent a new antibiotic class. Biotin triazoles inhibit the BPL from Staphylococcus aureus but not the human homologue. Our most potent inhibitor shows cytotoxicity against S. aureus but not cultured mammalian cells. This is the first report demonstrating selective inhibition of BPL.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.356576</identifier><identifier>PMID: 22437830</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antibiotics ; Bacterial Proteins - antagonists &amp; inhibitors ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Biotin ; Biotin - chemistry ; Biotin - pharmacology ; Biotin Protein Ligase ; Cell Line ; Click Chemistry ; Crystallography, X-Ray ; Drug Resistance, Bacterial - drug effects ; Enzyme Inhibitors ; Enzyme Inhibitors - chemical synthesis ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; Enzymology ; Humans ; Ligases - antagonists &amp; inhibitors ; Ligases - chemistry ; Ligases - metabolism ; Medicinal Chemistry ; Protein Binding ; Staphylococcus aureus - enzymology ; Triazoles - chemical synthesis ; Triazoles - chemistry ; Triazoles - pharmacokinetics ; X-ray Crystallography</subject><ispartof>The Journal of biological chemistry, 2012-05, Vol.287 (21), p.17823-17832</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-f1cabb07ff2c34e647fddf545b4f240c20efbbe92641fe09ef550f579aa7a3e13</citedby><cites>FETCH-LOGICAL-c489t-f1cabb07ff2c34e647fddf545b4f240c20efbbe92641fe09ef550f579aa7a3e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366794/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820503037$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3547,27923,27924,45779,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22437830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soares da Costa, Tatiana P.</creatorcontrib><creatorcontrib>Tieu, William</creatorcontrib><creatorcontrib>Yap, Min Y.</creatorcontrib><creatorcontrib>Pendini, Nicole R.</creatorcontrib><creatorcontrib>Polyak, Steven W.</creatorcontrib><creatorcontrib>Sejer Pedersen, Daniel</creatorcontrib><creatorcontrib>Morona, Renato</creatorcontrib><creatorcontrib>Turnidge, John D.</creatorcontrib><creatorcontrib>Wallace, John C.</creatorcontrib><creatorcontrib>Wilce, Matthew C.J.</creatorcontrib><creatorcontrib>Booker, Grant W.</creatorcontrib><creatorcontrib>Abell, Andrew D.</creatorcontrib><title>Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (Ki 90 nm) with a &gt;1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class. Inhibitors of biotin protein ligase potentially represent a new antibiotic class. Biotin triazoles inhibit the BPL from Staphylococcus aureus but not the human homologue. Our most potent inhibitor shows cytotoxicity against S. aureus but not cultured mammalian cells. This is the first report demonstrating selective inhibition of BPL.</description><subject>Antibiotics</subject><subject>Bacterial Proteins - antagonists &amp; inhibitors</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biotin</subject><subject>Biotin - chemistry</subject><subject>Biotin - pharmacology</subject><subject>Biotin Protein Ligase</subject><subject>Cell Line</subject><subject>Click Chemistry</subject><subject>Crystallography, X-Ray</subject><subject>Drug Resistance, Bacterial - drug effects</subject><subject>Enzyme Inhibitors</subject><subject>Enzyme Inhibitors - chemical synthesis</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymology</subject><subject>Humans</subject><subject>Ligases - antagonists &amp; inhibitors</subject><subject>Ligases - chemistry</subject><subject>Ligases - metabolism</subject><subject>Medicinal Chemistry</subject><subject>Protein Binding</subject><subject>Staphylococcus aureus - enzymology</subject><subject>Triazoles - chemical synthesis</subject><subject>Triazoles - chemistry</subject><subject>Triazoles - pharmacokinetics</subject><subject>X-ray Crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRbK2u3Un-QNp55rERtKgVKgpVcDdMJnfaKWmmzCSF_ntTokUX3s1Z3HPO5X4IXRM8Jjjlk3Whxy-E0DETiUiTEzQkOGMxE-TzFA0xpiTOqcgG6CKENe6G5-QcDSjlLM0YHqLZAirQjd1BZOuVLWxjXR05E91b19g6evOugU7ndqkCRMa7TbRo1Ha1r5x2WrchUq2HNlyiM6OqAFffOkIfjw_v01k8f316nt7NY82zvIkN0aoocGoM1YxDwlNTlkZwUXBDOdYUgykKyGnCiQGcgxECG5HmSqWKAWEjdNv3bttiA6WGuvGqkltvN8rvpVNW_t3UdiWXbicZS5I0513BpC_Q3oXgwRyzBMsDVNlBlQeosofaJW5-nzz6fyh2hrw3QPf4zoKXQVuoNZTWd3Bl6ey_5V-33Ill</recordid><startdate>20120518</startdate><enddate>20120518</enddate><creator>Soares da Costa, Tatiana P.</creator><creator>Tieu, William</creator><creator>Yap, Min Y.</creator><creator>Pendini, Nicole R.</creator><creator>Polyak, Steven W.</creator><creator>Sejer Pedersen, Daniel</creator><creator>Morona, Renato</creator><creator>Turnidge, John D.</creator><creator>Wallace, John C.</creator><creator>Wilce, Matthew C.J.</creator><creator>Booker, Grant W.</creator><creator>Abell, Andrew D.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20120518</creationdate><title>Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus</title><author>Soares da Costa, Tatiana P. ; Tieu, William ; Yap, Min Y. ; Pendini, Nicole R. ; Polyak, Steven W. ; Sejer Pedersen, Daniel ; Morona, Renato ; Turnidge, John D. ; Wallace, John C. ; Wilce, Matthew C.J. ; Booker, Grant W. ; Abell, Andrew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-f1cabb07ff2c34e647fddf545b4f240c20efbbe92641fe09ef550f579aa7a3e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Antibiotics</topic><topic>Bacterial Proteins - antagonists &amp; inhibitors</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biotin</topic><topic>Biotin - chemistry</topic><topic>Biotin - pharmacology</topic><topic>Biotin Protein Ligase</topic><topic>Cell Line</topic><topic>Click Chemistry</topic><topic>Crystallography, X-Ray</topic><topic>Drug Resistance, Bacterial - drug effects</topic><topic>Enzyme Inhibitors</topic><topic>Enzyme Inhibitors - chemical synthesis</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymology</topic><topic>Humans</topic><topic>Ligases - antagonists &amp; inhibitors</topic><topic>Ligases - chemistry</topic><topic>Ligases - metabolism</topic><topic>Medicinal Chemistry</topic><topic>Protein Binding</topic><topic>Staphylococcus aureus - enzymology</topic><topic>Triazoles - chemical synthesis</topic><topic>Triazoles - chemistry</topic><topic>Triazoles - pharmacokinetics</topic><topic>X-ray Crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soares da Costa, Tatiana P.</creatorcontrib><creatorcontrib>Tieu, William</creatorcontrib><creatorcontrib>Yap, Min Y.</creatorcontrib><creatorcontrib>Pendini, Nicole R.</creatorcontrib><creatorcontrib>Polyak, Steven W.</creatorcontrib><creatorcontrib>Sejer Pedersen, Daniel</creatorcontrib><creatorcontrib>Morona, Renato</creatorcontrib><creatorcontrib>Turnidge, John D.</creatorcontrib><creatorcontrib>Wallace, John C.</creatorcontrib><creatorcontrib>Wilce, Matthew C.J.</creatorcontrib><creatorcontrib>Booker, Grant W.</creatorcontrib><creatorcontrib>Abell, Andrew D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soares da Costa, Tatiana P.</au><au>Tieu, William</au><au>Yap, Min Y.</au><au>Pendini, Nicole R.</au><au>Polyak, Steven W.</au><au>Sejer Pedersen, Daniel</au><au>Morona, Renato</au><au>Turnidge, John D.</au><au>Wallace, John C.</au><au>Wilce, Matthew C.J.</au><au>Booker, Grant W.</au><au>Abell, Andrew D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-05-18</date><risdate>2012</risdate><volume>287</volume><issue>21</issue><spage>17823</spage><epage>17832</epage><pages>17823-17832</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (Ki 90 nm) with a &gt;1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class. Inhibitors of biotin protein ligase potentially represent a new antibiotic class. Biotin triazoles inhibit the BPL from Staphylococcus aureus but not the human homologue. Our most potent inhibitor shows cytotoxicity against S. aureus but not cultured mammalian cells. This is the first report demonstrating selective inhibition of BPL.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22437830</pmid><doi>10.1074/jbc.M112.356576</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2012-05, Vol.287 (21), p.17823-17832
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3366794
source PMC (PubMed Central); ScienceDirect Journals
subjects Antibiotics
Bacterial Proteins - antagonists & inhibitors
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Biotin
Biotin - chemistry
Biotin - pharmacology
Biotin Protein Ligase
Cell Line
Click Chemistry
Crystallography, X-Ray
Drug Resistance, Bacterial - drug effects
Enzyme Inhibitors
Enzyme Inhibitors - chemical synthesis
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - pharmacology
Enzymology
Humans
Ligases - antagonists & inhibitors
Ligases - chemistry
Ligases - metabolism
Medicinal Chemistry
Protein Binding
Staphylococcus aureus - enzymology
Triazoles - chemical synthesis
Triazoles - chemistry
Triazoles - pharmacokinetics
X-ray Crystallography
title Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20inhibition%20of%20Biotin%20Protein%20Ligase%20from%20Staphylococcus%20aureus&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Soares%20da%20Costa,%20Tatiana%20P.&rft.date=2012-05-18&rft.volume=287&rft.issue=21&rft.spage=17823&rft.epage=17832&rft.pages=17823-17832&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.356576&rft_dat=%3Celsevier_pubme%3ES0021925820503037%3C/elsevier_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-f1cabb07ff2c34e647fddf545b4f240c20efbbe92641fe09ef550f579aa7a3e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/22437830&rfr_iscdi=true