Loading…
Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene
Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitocho...
Saved in:
Published in: | The Journal of biological chemistry 2012-06, Vol.287 (24), p.20652-20663 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c489t-5dbd0bf2f1cfba9d9f00d5d3813e772a5d79346595e342885b8374e48755fc463 |
---|---|
cites | cdi_FETCH-LOGICAL-c489t-5dbd0bf2f1cfba9d9f00d5d3813e772a5d79346595e342885b8374e48755fc463 |
container_end_page | 20663 |
container_issue | 24 |
container_start_page | 20652 |
container_title | The Journal of biological chemistry |
container_volume | 287 |
creator | Leong, Dillon W. Komen, Jasper C. Hewitt, Chelsee A. Arnaud, Estelle McKenzie, Matthew Phipson, Belinda Bahlo, Melanie Laskowski, Adrienne Kinkel, Sarah A. Davey, Gayle M. Heath, William R. Voss, Anne K. Zahedi, René P. Pitt, James J. Chrast, Roman Sickmann, Albert Ryan, Michael T. Smyth, Gordon K. Thorburn, David R. Scott, Hamish S. |
description | Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4fky, the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4fky/fky mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4fky/fky mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the “N assembly module”, which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD+ ratio that inhibits mitochondrial fatty acid β-oxidation.
Mitochondrial complex I deficiency is a common inherited metabolic disease.
B2 transposable element insertion into Ndufs4 in mice causes loss of the “N assembly module” of complex I, alterations in cellular metabolites, and neurological symptoms.
NDUFS4 subunit is required for complex I stability.
Understanding the effects of oxidative phosphorylation defects is essential for the development of treatments. |
doi_str_mv | 10.1074/jbc.M111.327601 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3370248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820499351</els_id><sourcerecordid>1020048654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-5dbd0bf2f1cfba9d9f00d5d3813e772a5d79346595e342885b8374e48755fc463</originalsourceid><addsrcrecordid>eNp1UsFuGyEQXVWtGjftubeKo31YB1jw7l4quY6TWIrdSm6k3hALszHRGhxgo_qD-x_Fdhq1hyIBQvN4M_PmZdlHgscEl-zioVHjJSFkXNBygsmrbEBwVeQFJz9eZwOMKclryquz7F0IDzgtVpO32RmlvOA1p4Ps1zfvIritUUhajZYQZeO643tqZbcPEJBr0dJEpzbOam9kh2Zuu-vgJ1rkGlqjDNiIlq4PkE4NHboGC15G0KjZo_XO2SgtpDj6QtF643xECxvBh13aCbTqVQfSo3kH2wPVcL1YzUcJE8BH4ywyNjq0ml7eoEvY7LV392Blyja8a8xjb6yzMEJXkK_RsRtjEUPDle7bwEbHYt5nb1rZBfjwfJ9nd1fz77Ob_Pbr9WI2vc0Vq-qYc91o3LS0JaptZK3rFmPNdVGRAsqSSq7LumCTpBwUjFYVb6qiZMCqkvNWsUlxnn0-8e76ZgtapW687MTOm630e-GkEf9GrNmIe_ckiqLElFWJYPhM4N1jDyGKrQkKuu4koCCYphlWE84S9OIEVd6F4KF9SUOwOJhDJHOIgznEyRzpx6e_q3vB_3FDAtQnACSNngx4EQ7DVaCNBxWFdua_5L8B6bXMEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020048654</pqid></control><display><type>article</type><title>Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Leong, Dillon W. ; Komen, Jasper C. ; Hewitt, Chelsee A. ; Arnaud, Estelle ; McKenzie, Matthew ; Phipson, Belinda ; Bahlo, Melanie ; Laskowski, Adrienne ; Kinkel, Sarah A. ; Davey, Gayle M. ; Heath, William R. ; Voss, Anne K. ; Zahedi, René P. ; Pitt, James J. ; Chrast, Roman ; Sickmann, Albert ; Ryan, Michael T. ; Smyth, Gordon K. ; Thorburn, David R. ; Scott, Hamish S.</creator><creatorcontrib>Leong, Dillon W. ; Komen, Jasper C. ; Hewitt, Chelsee A. ; Arnaud, Estelle ; McKenzie, Matthew ; Phipson, Belinda ; Bahlo, Melanie ; Laskowski, Adrienne ; Kinkel, Sarah A. ; Davey, Gayle M. ; Heath, William R. ; Voss, Anne K. ; Zahedi, René P. ; Pitt, James J. ; Chrast, Roman ; Sickmann, Albert ; Ryan, Michael T. ; Smyth, Gordon K. ; Thorburn, David R. ; Scott, Hamish S.</creatorcontrib><description>Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4fky, the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4fky/fky mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4fky/fky mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the “N assembly module”, which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD+ ratio that inhibits mitochondrial fatty acid β-oxidation.
Mitochondrial complex I deficiency is a common inherited metabolic disease.
B2 transposable element insertion into Ndufs4 in mice causes loss of the “N assembly module” of complex I, alterations in cellular metabolites, and neurological symptoms.
NDUFS4 subunit is required for complex I stability.
Understanding the effects of oxidative phosphorylation defects is essential for the development of treatments.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.327601</identifier><identifier>PMID: 22535952</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; B2 SINE ; Binding Sites ; CI Deficiency ; DNA Transposable Elements ; Electron Transport Complex I - genetics ; Electron Transport Complex I - metabolism ; Humans ; Insertional Mutagenesis ; Leigh Disease - enzymology ; Leigh Disease - genetics ; Leigh Disease - pathology ; Leigh Disease - physiopathology ; Leigh Syndrome ; Metabolomics - methods ; Mice ; Mice, Mutant Strains ; Mice, Transgenic ; Mitochondria - enzymology ; Mitochondria - genetics ; Mitochondria - pathology ; Mitochondrial Diseases ; Mitochondrial Metabolism ; Molecular Bases of Disease ; Mouse ; Mouse Genetics ; Mouse Model ; Mutation ; NAD - genetics ; NAD - metabolism ; NADH Dehydrogenase - genetics ; NADH Dehydrogenase - metabolism ; NDUFS4 ; Proteomics ; Proteomics - methods ; RNA Splicing - genetics</subject><ispartof>The Journal of biological chemistry, 2012-06, Vol.287 (24), p.20652-20663</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-5dbd0bf2f1cfba9d9f00d5d3813e772a5d79346595e342885b8374e48755fc463</citedby><cites>FETCH-LOGICAL-c489t-5dbd0bf2f1cfba9d9f00d5d3813e772a5d79346595e342885b8374e48755fc463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370248/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820499351$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22535952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leong, Dillon W.</creatorcontrib><creatorcontrib>Komen, Jasper C.</creatorcontrib><creatorcontrib>Hewitt, Chelsee A.</creatorcontrib><creatorcontrib>Arnaud, Estelle</creatorcontrib><creatorcontrib>McKenzie, Matthew</creatorcontrib><creatorcontrib>Phipson, Belinda</creatorcontrib><creatorcontrib>Bahlo, Melanie</creatorcontrib><creatorcontrib>Laskowski, Adrienne</creatorcontrib><creatorcontrib>Kinkel, Sarah A.</creatorcontrib><creatorcontrib>Davey, Gayle M.</creatorcontrib><creatorcontrib>Heath, William R.</creatorcontrib><creatorcontrib>Voss, Anne K.</creatorcontrib><creatorcontrib>Zahedi, René P.</creatorcontrib><creatorcontrib>Pitt, James J.</creatorcontrib><creatorcontrib>Chrast, Roman</creatorcontrib><creatorcontrib>Sickmann, Albert</creatorcontrib><creatorcontrib>Ryan, Michael T.</creatorcontrib><creatorcontrib>Smyth, Gordon K.</creatorcontrib><creatorcontrib>Thorburn, David R.</creatorcontrib><creatorcontrib>Scott, Hamish S.</creatorcontrib><title>Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4fky, the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4fky/fky mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4fky/fky mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the “N assembly module”, which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD+ ratio that inhibits mitochondrial fatty acid β-oxidation.
Mitochondrial complex I deficiency is a common inherited metabolic disease.
B2 transposable element insertion into Ndufs4 in mice causes loss of the “N assembly module” of complex I, alterations in cellular metabolites, and neurological symptoms.
NDUFS4 subunit is required for complex I stability.
Understanding the effects of oxidative phosphorylation defects is essential for the development of treatments.</description><subject>Animals</subject><subject>B2 SINE</subject><subject>Binding Sites</subject><subject>CI Deficiency</subject><subject>DNA Transposable Elements</subject><subject>Electron Transport Complex I - genetics</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Humans</subject><subject>Insertional Mutagenesis</subject><subject>Leigh Disease - enzymology</subject><subject>Leigh Disease - genetics</subject><subject>Leigh Disease - pathology</subject><subject>Leigh Disease - physiopathology</subject><subject>Leigh Syndrome</subject><subject>Metabolomics - methods</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Mice, Transgenic</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Diseases</subject><subject>Mitochondrial Metabolism</subject><subject>Molecular Bases of Disease</subject><subject>Mouse</subject><subject>Mouse Genetics</subject><subject>Mouse Model</subject><subject>Mutation</subject><subject>NAD - genetics</subject><subject>NAD - metabolism</subject><subject>NADH Dehydrogenase - genetics</subject><subject>NADH Dehydrogenase - metabolism</subject><subject>NDUFS4</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>RNA Splicing - genetics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1UsFuGyEQXVWtGjftubeKo31YB1jw7l4quY6TWIrdSm6k3hALszHRGhxgo_qD-x_Fdhq1hyIBQvN4M_PmZdlHgscEl-zioVHjJSFkXNBygsmrbEBwVeQFJz9eZwOMKclryquz7F0IDzgtVpO32RmlvOA1p4Ps1zfvIritUUhajZYQZeO643tqZbcPEJBr0dJEpzbOam9kh2Zuu-vgJ1rkGlqjDNiIlq4PkE4NHboGC15G0KjZo_XO2SgtpDj6QtF643xECxvBh13aCbTqVQfSo3kH2wPVcL1YzUcJE8BH4ywyNjq0ml7eoEvY7LV392Blyja8a8xjb6yzMEJXkK_RsRtjEUPDle7bwEbHYt5nb1rZBfjwfJ9nd1fz77Ob_Pbr9WI2vc0Vq-qYc91o3LS0JaptZK3rFmPNdVGRAsqSSq7LumCTpBwUjFYVb6qiZMCqkvNWsUlxnn0-8e76ZgtapW687MTOm630e-GkEf9GrNmIe_ckiqLElFWJYPhM4N1jDyGKrQkKuu4koCCYphlWE84S9OIEVd6F4KF9SUOwOJhDJHOIgznEyRzpx6e_q3vB_3FDAtQnACSNngx4EQ7DVaCNBxWFdua_5L8B6bXMEQ</recordid><startdate>20120608</startdate><enddate>20120608</enddate><creator>Leong, Dillon W.</creator><creator>Komen, Jasper C.</creator><creator>Hewitt, Chelsee A.</creator><creator>Arnaud, Estelle</creator><creator>McKenzie, Matthew</creator><creator>Phipson, Belinda</creator><creator>Bahlo, Melanie</creator><creator>Laskowski, Adrienne</creator><creator>Kinkel, Sarah A.</creator><creator>Davey, Gayle M.</creator><creator>Heath, William R.</creator><creator>Voss, Anne K.</creator><creator>Zahedi, René P.</creator><creator>Pitt, James J.</creator><creator>Chrast, Roman</creator><creator>Sickmann, Albert</creator><creator>Ryan, Michael T.</creator><creator>Smyth, Gordon K.</creator><creator>Thorburn, David R.</creator><creator>Scott, Hamish S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120608</creationdate><title>Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene</title><author>Leong, Dillon W. ; Komen, Jasper C. ; Hewitt, Chelsee A. ; Arnaud, Estelle ; McKenzie, Matthew ; Phipson, Belinda ; Bahlo, Melanie ; Laskowski, Adrienne ; Kinkel, Sarah A. ; Davey, Gayle M. ; Heath, William R. ; Voss, Anne K. ; Zahedi, René P. ; Pitt, James J. ; Chrast, Roman ; Sickmann, Albert ; Ryan, Michael T. ; Smyth, Gordon K. ; Thorburn, David R. ; Scott, Hamish S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-5dbd0bf2f1cfba9d9f00d5d3813e772a5d79346595e342885b8374e48755fc463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>B2 SINE</topic><topic>Binding Sites</topic><topic>CI Deficiency</topic><topic>DNA Transposable Elements</topic><topic>Electron Transport Complex I - genetics</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Humans</topic><topic>Insertional Mutagenesis</topic><topic>Leigh Disease - enzymology</topic><topic>Leigh Disease - genetics</topic><topic>Leigh Disease - pathology</topic><topic>Leigh Disease - physiopathology</topic><topic>Leigh Syndrome</topic><topic>Metabolomics - methods</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Mice, Transgenic</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Diseases</topic><topic>Mitochondrial Metabolism</topic><topic>Molecular Bases of Disease</topic><topic>Mouse</topic><topic>Mouse Genetics</topic><topic>Mouse Model</topic><topic>Mutation</topic><topic>NAD - genetics</topic><topic>NAD - metabolism</topic><topic>NADH Dehydrogenase - genetics</topic><topic>NADH Dehydrogenase - metabolism</topic><topic>NDUFS4</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>RNA Splicing - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leong, Dillon W.</creatorcontrib><creatorcontrib>Komen, Jasper C.</creatorcontrib><creatorcontrib>Hewitt, Chelsee A.</creatorcontrib><creatorcontrib>Arnaud, Estelle</creatorcontrib><creatorcontrib>McKenzie, Matthew</creatorcontrib><creatorcontrib>Phipson, Belinda</creatorcontrib><creatorcontrib>Bahlo, Melanie</creatorcontrib><creatorcontrib>Laskowski, Adrienne</creatorcontrib><creatorcontrib>Kinkel, Sarah A.</creatorcontrib><creatorcontrib>Davey, Gayle M.</creatorcontrib><creatorcontrib>Heath, William R.</creatorcontrib><creatorcontrib>Voss, Anne K.</creatorcontrib><creatorcontrib>Zahedi, René P.</creatorcontrib><creatorcontrib>Pitt, James J.</creatorcontrib><creatorcontrib>Chrast, Roman</creatorcontrib><creatorcontrib>Sickmann, Albert</creatorcontrib><creatorcontrib>Ryan, Michael T.</creatorcontrib><creatorcontrib>Smyth, Gordon K.</creatorcontrib><creatorcontrib>Thorburn, David R.</creatorcontrib><creatorcontrib>Scott, Hamish S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leong, Dillon W.</au><au>Komen, Jasper C.</au><au>Hewitt, Chelsee A.</au><au>Arnaud, Estelle</au><au>McKenzie, Matthew</au><au>Phipson, Belinda</au><au>Bahlo, Melanie</au><au>Laskowski, Adrienne</au><au>Kinkel, Sarah A.</au><au>Davey, Gayle M.</au><au>Heath, William R.</au><au>Voss, Anne K.</au><au>Zahedi, René P.</au><au>Pitt, James J.</au><au>Chrast, Roman</au><au>Sickmann, Albert</au><au>Ryan, Michael T.</au><au>Smyth, Gordon K.</au><au>Thorburn, David R.</au><au>Scott, Hamish S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-06-08</date><risdate>2012</risdate><volume>287</volume><issue>24</issue><spage>20652</spage><epage>20663</epage><pages>20652-20663</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4fky, the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4fky/fky mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4fky/fky mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the “N assembly module”, which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD+ ratio that inhibits mitochondrial fatty acid β-oxidation.
Mitochondrial complex I deficiency is a common inherited metabolic disease.
B2 transposable element insertion into Ndufs4 in mice causes loss of the “N assembly module” of complex I, alterations in cellular metabolites, and neurological symptoms.
NDUFS4 subunit is required for complex I stability.
Understanding the effects of oxidative phosphorylation defects is essential for the development of treatments.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22535952</pmid><doi>10.1074/jbc.M111.327601</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2012-06, Vol.287 (24), p.20652-20663 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3370248 |
source | ScienceDirect Journals; PubMed Central |
subjects | Animals B2 SINE Binding Sites CI Deficiency DNA Transposable Elements Electron Transport Complex I - genetics Electron Transport Complex I - metabolism Humans Insertional Mutagenesis Leigh Disease - enzymology Leigh Disease - genetics Leigh Disease - pathology Leigh Disease - physiopathology Leigh Syndrome Metabolomics - methods Mice Mice, Mutant Strains Mice, Transgenic Mitochondria - enzymology Mitochondria - genetics Mitochondria - pathology Mitochondrial Diseases Mitochondrial Metabolism Molecular Bases of Disease Mouse Mouse Genetics Mouse Model Mutation NAD - genetics NAD - metabolism NADH Dehydrogenase - genetics NADH Dehydrogenase - metabolism NDUFS4 Proteomics Proteomics - methods RNA Splicing - genetics |
title | Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic%20and%20Metabolomic%20Analyses%20of%20Mitochondrial%20Complex%20I-deficient%20Mouse%20Model%20Generated%20by%20Spontaneous%20B2%20Short%20Interspersed%20Nuclear%20Element%20(SINE)%20Insertion%20into%20NADH%20Dehydrogenase%20(Ubiquinone)%20Fe-S%20Protein%204%20(Ndufs4)%20Gene&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Leong,%20Dillon%20W.&rft.date=2012-06-08&rft.volume=287&rft.issue=24&rft.spage=20652&rft.epage=20663&rft.pages=20652-20663&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.327601&rft_dat=%3Cproquest_pubme%3E1020048654%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-5dbd0bf2f1cfba9d9f00d5d3813e772a5d79346595e342885b8374e48755fc463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1020048654&rft_id=info:pmid/22535952&rfr_iscdi=true |