Loading…
Transient Excited-State Absorption and Gain Spectroscopy of a Two-Photon Absorbing Probe with Efficient Superfluorescent Properties
The synthesis, linear photophysical properties, two-photon absorption (2PA), excited-state transient absorption, and gain spectroscopy of a new fluorene derivative tert-butyl 4,4′-(4,4′ (1E,1′E)-2,2′-(9,9-bis(2-(2-ethoxyethoxy)ethyl)-9H-fluorene-2,7-diyl)bis(ethene-2,1-diyl)bis(4,1 phenylene)]dipipe...
Saved in:
Published in: | Journal of physical chemistry. C 2012-05, Vol.116 (20), p.11261-11271 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The synthesis, linear photophysical properties, two-photon absorption (2PA), excited-state transient absorption, and gain spectroscopy of a new fluorene derivative tert-butyl 4,4′-(4,4′ (1E,1′E)-2,2′-(9,9-bis(2-(2-ethoxyethoxy)ethyl)-9H-fluorene-2,7-diyl)bis(ethene-2,1-diyl)bis(4,1 phenylene)]dipiperazine-1-carboxylate (1) are reported. The steady-state linear absorption and fluorescence spectra along with excitation anisotropy, fluorescence lifetimes, and photochemical stability of 1 were investigated in a number of organic solvents at room temperature. The 2PA spectra of 1 with a maximum cross section of ∼300 GM were obtained with a 1-kHz femtosecond laser system using open-aperture Z-scan and two-photon-induced fluorescence methods. The transient excited-state absorption (ESA) and gain kinetics of 1 were investigated by a femtosecond pump–probe methodology. Fast relaxation processes (∼1–2 ps) in the gain and ESA spectra of 1 were revealed in ACN solution, attributable to symmetry-breaking effects in the first excited state. Efficient superfluorescence properties of 1 were observed in a nonpolar solvent under femtosecond excitation. One- and two-photon fluorescence microscopy imaging of HCT 116 cells incubated with probe 1 was accomplished, suggesting the potential of this new probe in two-photon fluorescence microscopy bioimaging. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp302274v |